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Abstract

Railway systems are required to deliver reliable and frequent service on infrastructure
operating close to capacity. In dense corridors, even small disturbances—such as
delayed arrivals, extended dwell times, or minor faults—can propagate through the
timetable and cause widespread disruption. Traditional rescheduling approaches
based on Mixed-Integer Linear Programming (MILP) or handcrafted heuristics can
produce high-quality solutions, but they often struggle to react within strict time
limits, scale to many simultaneous conflicts, or adapt efficiently to changing traffic
conditions.

These limitations motivate learning-based approaches that can reuse prior expe-
rience and provide rapid decision support. Deep Reinforcement Learning (DRL)
offers the ability to learn dispatching policies that map operational states directly
to conflict-resolution actions, enabling near real-time response. However, for such
methods to be operationally viable, they must accurately capture microscopic rail-
way constraints, restrict decisions to feasible actions, and optimize delay measures
relevant to practice.

This thesis investigates the applicability of DRL for microscopic train timetable
conflict resolution using the Alternative Graph (AG) representation, which is widely
used in railway planning to model event timing, precedence relations, and train—block
conflicts. A data-to-environment pipeline is developed that transforms operational
exports from the Leistungsuntersuchung Knoten und Strecke (LUKS) system into
AG instances and a Markov Decision Process. Within this environment, a Deep Q-
Network (DQN) is trained to resolve conflicts by selecting local precedence decisions
that minimize network-wide delay.

The proposed approach is evaluated on realistic railway scenarios and benchmarked
against OptDis, an industry-standard MILP-based solver, under matched distur-
bance scenarios and time constraints. The results show that the trained DRL agent
consistently produces feasible rescheduling decisions with negligible inference latency
on fixed infrastructure topologies. Within a given corridor, the learned policy gen-
eralizes across disturbance magnitudes, train orderings, and traffic densities, but ex-
hibits limited generalization to previously unseen infrastructure layouts and higher
cumulative delay at very high traffic densities.

Overall, the findings demonstrate that DRL can complement, rather than replace,
optimization-based rescheduling methods. When applied within a fixed operational
context, a trained policy can provide fast, feasible decisions that support dispatch-
ers under time pressure and potentially accelerate or guide exact optimization, con-
tributing to more responsive and scalable railway timetable rescheduling.
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Introduction

Railway systems play a central role in modern societies by enabling large-scale,
energy-efficient mobility for passengers and freight. They support economic activ-
ity, regional connectivity, and sustainable transportation policies by offering high-
capacity transport with comparatively low environmental impact. As demand for
rail transport continues to grow—driven by urbanization, climate goals, and shifts
away from road and air traffic—railway infrastructure is increasingly operated close
to its theoretical capacity limits.

Operating near capacity makes railway systems particularly sensitive to distur-
bances. Even small deviations from the planned timetable, such as delayed arrivals,
extended dwell times, rolling stock irregularities, or minor infrastructure faults, can
quickly propagate through the network. Because trains share scarce resources such as
track sections, switches, and platforms under strict safety and signaling constraints,
a local disruption may trigger chains of conflicts that affect many subsequent train
movements. Managing these disruptions is therefore a critical operational task with
direct consequences for service reliability, passenger satisfaction, and network effi-
ciency.

A central challenge in this context is microscopic train timetable conflict resolu-
tion—the problem of deciding, at the level of individual block sections and switches,
which train should be granted precedence when competing movements arise. These
decisions must be made under severe time pressure, while respecting detailed op-
erational constraints and minimizing delay propagation. In practice, dispatchers
are required to continuously adapt the timetable in response to evolving conditions,
often within seconds.

Existing approaches and their limitations

State-of-practice methods for railway timetable rescheduling are predominantly based
on Mixed-Integer Linear Programming (MILP) formulations or carefully engineered
heuristics. MILP-based approaches can model detailed operational constraints and
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often produce high-quality or near-optimal solutions. However, their computational
complexity grows rapidly with traffic density, network size, and the number of simul-
taneous conflicts. As a result, they may struggle to provide timely solutions in highly
disturbed or large-scale scenarios, or when repeated re-optimization is required.

Heuristic and rule-based approaches offer faster response times, but typically rely on
manually designed strategies that may be sensitive to scenario structure and difficult
to adapt to new operating conditions. Both classes of methods face challenges when
rapid, repeated decisions are required under tight real-time constraints.

These limitations have motivated growing interest in learning-based approaches,
which aim to reuse experience across scenarios and produce decisions with very
low inference latency. In particular, reinforcement learning (RL) has emerged as a
promising paradigm for sequential decision-making problems under uncertainty. By
learning policies that map operational states directly to control actions, RL methods
offer the potential to support dispatchers with fast, adaptive decision suggestions
once trained.

Alternative Graphs as a modeling foundation

For learning-based approaches to be operationally viable in railway applications, they
must be grounded in a representation that accurately captures microscopic railway
constraints and remains interpretable for practitioners. A widely used model in
railway planning and dispatching is the Alternative Graph (AG).

At a high level, an Alternative Graph represents a timetable as a directed graph in
which:

e Nodes correspond to train-resource events (e.g., a train occupying a block).

e Fixed arcs encode mandatory precedence relations within a train’s route, such
as running and dwell time constraints.

e Alternative arc pairs represent conflicts on shared infrastructure, capturing
the two possible precedence orders between competing trains.

Resolving a conflict corresponds to selecting one arc from an alternative pair, thereby
fixing the order in which trains use a shared resource. This structure makes conflicts
explicit, supports incremental decision-making, and allows feasibility checking via
well-defined graph properties. Because of these characteristics, the AG has been
successfully used as a backbone for both exact optimization and heuristic dispatching
methods and provides a natural interface for sequential decision-making.

Industrial context and motivation

This thesis is conducted in collaboration with Quattron GmbH, a company operating
in the railway consulting and software segment. Quattron develops tools for rail-
way infrastructure analysis, capacity assessment, and timetable planning, and sup-
ports infrastructure managers and railway undertakings in operational and strategic
decision-making.
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In this context, Quattron’s proprietary software LUKS (Leistungsuntersuchung Knoten
und Strecken) is used in practice to analyze network performance and resolve timetable
conflicts under disturbances. LUKS includes an optimization-based rescheduling
component (OptDis) that formulates conflict resolution as a MILP problem. While
this approach is effective and delivers high-quality solutions, its computational ef-
fort can increase significantly as the number of conflicts grows, making large-scale
or real-time rescheduling challenging in heavily disrupted scenarios.

Importantly, LUKS also provides access to realistic, industrial-grade planning data,
including infrastructure layouts, block occupation times, and disturbed timetables.
This makes it possible to evaluate alternative approaches under conditions that
closely reflect real-world railway operations.

Thesis focus and approach

This thesis addresses the problem of microscopic train timetable conflict resolution
under disturbances by investigating whether reinforcement learning can complement
existing optimization-based approaches. Rather than recomputing complete sched-
ules from scratch, the problem is formulated as a sequence of local precedence deci-
sions on shared infrastructure, whose cumulative effect determines delay propagation
across the network.

To this end, the thesis proposes a learning-based rescheduling framework that com-
bines:

e The Alternative Graph as an interpretable and constraint-faithful representa-
tion of railway operations;

e Reinforcement learning, enabling the automatic acquisition of conflict-resolution
policies from experience.

Once trained, such a policy can generate feasible conflict-resolution actions with
very low latency, making it suitable for time-critical dispatching scenarios. The
framework operates directly on data exported from the proprietary LUKS tool, which
are converted into consistent graph-based representations suitable for learning-based
decision-making.

Overall, this work does not aim to replace exact optimization methods. Instead,
it investigates whether reinforcement learning can provide fast, feasible decisions
that support dispatchers under time pressure and integrate naturally into hybrid
workflows combining learning-based policies and optimization-based refinement.

1.1 Problem Statement

Railway networks are complex, tightly coupled systems in which even minor distur-
bances can cascade into significant delays due to interdependencies among trains,
scarce infrastructure resources, and strict safety and headway constraints [4]. In
dense operating conditions, such disturbances give rise to precedence conflicts on
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shared blocks and junctions that must be resolved within tight operational time
limits.

At Quattron GmbH, train scheduling conflicts are currently resolved using the pro-
prietary LUKS software, which employs an optimization-based rescheduling ap-
proach. While this method can deliver high-quality solutions, its computational
cost increases with the number of simultaneous conflicts and traffic density, limit-
ing its effectiveness in real-time or large-scale rescheduling scenarios where rapid,
repeated decisions are required [2].

Recent advances in artificial intelligence (Al), and in particular reinforcement learn-
ing, offer an alternative paradigm for addressing such problems. Learning-based
methods can exploit experience from previous scenarios, adapt to evolving condi-
tions, and produce decisions with predictable and low inference times [13]. However,
their applicability in railway operations depends critically on the ability to preserve
microscopic feasibility constraints and to operate on realistic industrial data.

The objective of this thesis is therefore to design and evaluate a reinforcement-
learning-based framework for microscopic train timetable conflict resolution that:

e operates on an Alternative Graph representation derived from real operational
data;

e produces feasible conflict-resolution decisions;
e limits delay propagation under disturbances; and

e can be fairly compared to an industrial optimization-based solver under matched
conditions.

Key Research Questions:

1. How can Alternative Graph—based representations be leveraged to support effi-
cient, learning-based conflict resolution in railway timetabling while preserving
the microscopic constraints required in practice?

2. Can reinforcement learning methods learn effective conflict-resolution strate-
gies that generalize across different disturbance scenarios on the same corridor
and closely related topologies?

3. How does the performance of the proposed learning-based method compare
to the existing LUKS optimization-based solver in practical railway network
instances, with respect to total and maximum delay, time to solution, and
scalability as conflicts and traffic density increase?

1.2 Proposed Approach and Contributions

This thesis proposes a learning-based framework for microscopic train timetable con-
flict resolution under disturbances. The approach combines an established graph-
based representation used in railway planning with reinforcement learning to support
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fast and feasible precedence decisions on shared infrastructure. Rather than recom-
puting complete schedules from scratch, the framework addresses rescheduling as
a sequence of local conflict-resolution decisions whose cumulative effect determines
delay propagation across the network.

The proposed approach is designed to operate on realistic operational data and to
produce decisions with low inference latency, making it suitable for time-critical
dispatching scenarios. Its effectiveness is assessed through systematic benchmarking
against an industrial optimization-based solver under matched disturbance scenarios
and comparable time budgets, focusing on solution quality, computational behavior,
and scalability.

The main contributions of this thesis are:

e A practical data-to-decision pipeline that transforms industrial railway plan-
ning data into a form suitable for learning-based timetable rescheduling.

e A conflict-resolution formulation that integrates an interpretable graph-based
railway model with reinforcement learning while preserving operational feasi-
bility.

e An empirical evaluation of the proposed approach on realistic railway scenarios,
including a comparative benchmark against an industrial optimization-based
solver.

e An analysis of scalability, generalization across disturbance scenarios, and
the potential of learning-based methods to complement optimization-based
rescheduling in operational settings.

1.3 Hypothesis

This section presents the hypotheses guiding the empirical evaluation of the pro-
posed framework, focusing on solution quality, generalization, and computational
performance under realistic operational conditions.

H1. A reinforcement-learning-based agent operating on an Alternative Graph repre-
sentation can learn conflict-resolution policies that reduce total and maximum delay
compared to baseline heuristic approaches in disturbed scenarios. Test: Compare
the learned policy against rule-based or greedy heuristics on matched disturbance
scenarios, reporting total delay, maximum delay, and solution feasibility under iden-
tical time budgets.

H2. The learned conflict-resolution policy can generalize to unseen disturbance
scenarios on the same network and to new traffic patterns on closely related infras-
tructure topologies. Test: Evaluate the policy on held-out disturbance scenarios and
topology-preserving network variations, and assess performance degradation across
increasing traffic densities using delay-based metrics.

H3. Under practical time constraints and disturbance scales, the proposed learning-
based approach can achieve solution quality comparable to an industrial optimization-
based solver while exhibiting more predictable or lower computation times. Test:
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Conduct head-to-head comparisons with the OptDis solver under matched time bud-
gets, measuring solution quality, time to first feasible solution, and scalability as the
number of conflicts increases.

1.4 Goals

This section summarizes the main goals of the thesis, focusing on practical applica-
bility, rigorous evaluation, and reproducible research.

e Develop and validate a microscopic Alternative-Graph-driven reinforcement
learning framework for train timetable rescheduling that produces feasible solu-
tions with low total and maximum delay and latency compatible with real-time
operation.

e Benchmark rigorously against a state-of-practice optimization-based tool (Opt-
Dis) under matched scenarios and time budgets, comparing solution quality,
runtime behavior, and scalability.

¢ Ensure extensibility and reproducibility through a modular framework design

that supports exact reruns and future extensions.

Those goals are further specified in the following subsection.

1.4.1 Specific Objectives

This subsection specifies the concrete technical objectives that guide the design,
implementation, and evaluation of the proposed framework.

Data and modeling.

e Prepare and harmonize realistic railway infrastructure and timetable data to
support microscopic conflict-resolution experiments.

e Construct graph-based timetable representations capable of modeling multiple
trains and shared infrastructure resources.

Decision framework.

e Formulate timetable rescheduling as a sequential decision problem that pre-
serves operational feasibility while limiting delay propagation.

e Ensure that only valid conflict-resolution decisions are considered during reschedul-
ing.
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Learning approach.

e Train a reinforcement-learning-based policy to support fast conflict-resolution
decisions suitable for time-critical dispatching.

e Investigate the impact of different state representations and learning objectives
on solution quality and robustness.

Evaluation.

e Design realistic disturbance scenarios to assess solution quality, generalization,
and robustness.

e Compare the proposed approach against an industrial optimization-based solver
using delay- and runtime-oriented metrics.

Deliverables.

e A reusable experimental framework and an empirical evaluation of learning-
based timetable rescheduling under realistic conditions.

1.5 Thesis structure

This thesis is structured as follows. Chapter 2 provides background on railway
timetabling, the Alternative Graph model, and deep reinforcement learning, and
reviews related work. In the third chapter the design and methodology of the pro-
posed framework, including the data pipeline based on LUKS exports, the Alter-
native Graph construction, and the formulation of the rescheduling problem as a
reinforcement learning environment are discussed.

Next chapter describes the learning approach in detail, including the DQN agent
architecture, action masking, training procedure, and implementation aspects. The
following chapter 5, reports the experimental evaluation and benchmarking against
the industrial OptDis solver, analyzing solution quality, computational performance,
scalability, and ablation studies. Chapter 6 discusses the results in a broader context,
highlights limitations, and concludes the thesis with directions for future research.
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Background

This chapter provides the background required for the proposed approach. It first
introduces concepts of microscopic railway timetabling and conflict modeling using
the Alternative Graph. It then reviews reinforcement-learning formulations relevant
to sequential conflict resolution. Finally, related academic and industrial approaches
are discussed to position the contribution of this thesis.

2.1 Railway Timetabling and Conflict Modeling

Railway timetabling coordinates trains that share scarce infrastructure resources
such as block sections, platforms, and junctions under signaling, safety, and headway
constraints. A timetable fixes the order and timing of movements so that each train
has exclusive access to infrastructure for defined time intervals. Disturbances such as
delays or extended dwell times can cause these intervals to overlap, creating conflicts
that require resolution.

Operational constraints depend on the signaling regime. In fixed-block systems,
blocks must be cleared before a following train may enter, whereas in moving-block
systems separation is determined dynamically based on braking constraints. In both
cases, rescheduling aims to restore safe separation while limiting delay propagation.

A widely used conceptual framework for understanding these constraints is the
blocking-time view (Sperrzeiten). For each train and route, the time during which
infrastructure is occupied can be decomposed into several phases, including route
setup, approach to the protecting signal, traversal of the block, track clearance (in-
cluding train length), and route release. When plotted over successive infrastructure
elements, these phases form a characteristic blocking-time stairway that visualizes
when a resource is unavailable to other trains.

From this perspective, the minimum headway between two trains on a shared sec-
tion is the smallest temporal separation that prevents their blocking-time stairways
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from overlapping at the first common element. Any remaining separation consti-
tutes buffer time, which provides robustness against small disturbances. Two types
of conflicts are typically distinguished in practice: buffer-time conflicts, where the
buffer is reduced but remains positive, and occupancy conflicts, where blocking times
overlap and a clear precedence decision is required. This distinction explains how
minor schedule changes can propagate delays along a corridor and how local spacing
decisions affect overall timetable stability.

At the microscopic level, these interactions can be represented using an Alternative
Graph (AG) model. In this representation, nodes correspond to train events on
infrastructure elements and carry timing information, while arcs encode precedence
relations. Fixed arcs represent constraints that must always be satisfied, such as
running and dwell times within a train’s schedule. Conflicts on shared resources
are modeled using pairs of mutually exclusive alternative arcs, each corresponding
to a different ordering of the involved trains. Selecting one alternative resolves the
conflict by fixing the precedence on that resource.

The AG provides a compact and interpretable representation of timetable conflicts
and their resolution. It supports stepwise decision-making, where individual prece-
dence choices can be analyzed in relation to physical infrastructure constraints and
blocking-time interactions. Detailed algorithmic formulations and decision-making
methods based on this representation are introduced in the following chapters.

2.2 Related Work

Research on timetable rescheduling spans exact optimization, heuristic and meta-
heuristic approaches, and learning-based methods [16]. Mixed Integer Linear Pro-
gramming (MILP) formulations encode microscopic precedence constraints, head-
ways, and capacity limits, and solve for conflict-free schedules that minimize total
delay or makespan. These models are strong in terms of solution quality and op-
timality guarantees, but their computational cost can become prohibitive on dense
networks or under strict real-time decision deadlines [2]. Heuristics and metaheuris-
tics [19], including genetic algorithms, tabu search, particle swarm optimization,
and simulated annealing, trade optimality guarantees for faster response times and
improved scalability, but are often sensitive to parameter tuning and scenario struc-
ture. Survey and integrated studies further highlight the complexity of disruption
management, where timetable, rolling stock, and crew rescheduling interact, and
where uncertainty handling and decision timing play a critical role [23]. A struc-
tured comparison of representative timetable rescheduling approaches discussed in
this section is provided in 2.1

[3] presents a comprehensive survey of railway disruption management, covering
timetable, rolling stock, and crew rescheduling problems. The work classifies exact
optimization approaches, heuristics, and integrated recovery frameworks, and high-
lights the trade-off between modeling fidelity and computational tractability. While
it provides a broad overview of existing methods and challenges, it does not pro-
pose a concrete rescheduling algorithm and therefore serves primarily as contextual
background for this thesis.
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An exact Mixed-Integer Linear Programming formulation for microscopic train time-
table rescheduling under disturbances is proposed in [5]. The model captures detailed
precedence constraints, headways, and block occupancy conflicts, and is capable of
producing high-quality feasible schedules. However, the reported computational
effort increases significantly with network size and disturbance complexity, limiting
its applicability in real-time or highly congested scenarios.

The Alternative Graph (AG) has long been used as a microscopic backbone for train
dispatching because it cleanly separates fixed intra-train precedence constraints from
resource conflicts through the use of alternative arcs [4, 20]. This structure sup-
ports incremental decision making—commit a precedence choice, propagate times,
and check feasibility—and reduces feasibility verification to the absence of nega-
tive cycles. As such, the AG aligns closely with dispatcher workflows and has been
successfully employed in both exact optimization and heuristic control frameworks.
Classical studies demonstrate AG-based branching strategies, area-wise coordination
between adjacent dispatching regions, and fast feasibility propagation, often com-
bined with pruning rules that restrict the decision space around stations or junctions
to meet real-time requirements.

Building on these foundations, more recent work has explored the integration of
AG-based models with deep reinforcement learning [11]. In these approaches, each
unresolved conflict—represented as a pair of alternative arcs—is treated as a discrete
action, the state encodes current timing and resource availability, and the reward
reflects delay reduction. Deep Q-Networks (DQN) are a natural choice in this setting
due to the discrete action space. Feasibility studies on small or simplified networks
[7], as well as experiments on selected real-world areas, indicate that trained policies
can approach the solution quality of MILP-based methods while producing decisions
orders of magnitude faster at inference time. Across these studies, several practical
design principles recur: state representations must remain compact as traffic den-
sity grows, action masking is essential to prevent infeasible decisions and accelerate
learning, and reward definitions should correlate directly with operational delay met-
rics. Some authors also report that combining stepwise delay reduction with a small
terminal reward can improve training stability without compromising convergence
speed.

Other learning-based directions investigate centralized versus decentralized control
and multi-agent formulations. Decentralized approaches assign local agents to in-
dividual trains, which can improve scalability but may lead to myopic behavior if
coordination mechanisms are weak. Centralized policies operate on a global view
of the system and can capture delay propagation effects more accurately, at the
cost of larger state and action spaces [25]. Graph Neural Networks (GNNs) have
also been proposed as state encoders to exploit railway network structure explicitly
[12]. While promising in terms of generalization, such models increase architectural
complexity and reduce transparency. Across learning-based studies, common op-
erational lessons emerge: unsafe actions should be masked rather than penalized
post hoc, rewards should remain simple and interpretable, and detailed logging of
constraints and timing is necessary to diagnose failures.

A hybrid rescheduling framework combining data-driven components with Mixed-
Integer Linear Programming is presented in [17]. Machine-learning models are used
to estimate delay propagation and constraint tightness, while final conflict resolution
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is performed through an optimization solver. Although this integration improves
robustness compared to purely optimization-based methods, the reliance on repeated
MILP solves results in substantial computational overhead, which can hinder real-
time applicability under heavy traffic conditions.

[9] investigates a reinforcement-learning-based approach to support real-time dis-
patching decisions. Conflict resolution is modeled as a sequential decision process,
and learned policies are evaluated as fast decision-support tools rather than full
timetable optimizers. The approach emphasizes practical usability but is demon-
strated primarily on limited prototype scenarios and does not incorporate a full
microscopic Alternative Graph representation or large-scale industrial data.

On the optimization side, robust and stochastic rescheduling models explicitly ad-
dress uncertainty in running and dwell times, improving worst-case performance and
service reliability at the expense of increased computational effort. Decomposition
techniques and rolling-horizon approaches mitigate this cost by optimizing over lim-
ited time windows, applying decisions, and re-optimizing as the system evolves [5].
Corridor-level and station-centric models further reduce problem size by focusing
on local bottlenecks. These strategies are not inherently opposed to learning-based
methods; rather, they motivate hybrid approaches in which fast learned policies gen-
erate initial precedence orderings or prune poor choices, while exact solvers refine
timing decisions.

A growing body of work explores tighter integration between learning and opti-
mization. Imitation learning uses high-quality MILP solutions to train policies
that mimic expert decisions, reducing exploration overhead. Learning-to-rank and
pointer-network architectures score conflicts or candidate orderings before a short
optimization “polish” step. Offline reinforcement learning and dataset aggregation
leverage historical dispatch data or solver traces, which is attractive in safety-critical
settings where online exploration is undesirable. Transfer learning and domain ran-
domization further aim to improve robustness across varying traffic densities and
disturbance patterns [14].

Industrial-grade solvers such as OptDis remain strong baselines due to their consis-
tent solution quality under bounded computation times. As a result, recent studies
emphasize the importance of fair and operationally meaningful comparisons, includ-
ing matched disturbance scenarios, matched time budgets, and common metrics
such as total delay, maximum delay, and time to first feasible solution. Rather than
framing the problem as a competition between learning and optimization, this per-
spective highlights complementary strengths, where learning-based policies provide
rapid, good-enough decisions and optimization ensures high-quality final solutions
[10].

Finally, data realism remains a key differentiator between research prototypes and
deployable systems. While many learning-based studies rely on synthetic or heav-
ily simplified inputs, this thesis operates directly on industrial data exported from
the LUKS system, including infrastructure elements, running times, and occupancy
information. Block and segment extraction are performed directly from LUKS out-
puts, while preserving compatibility with standard AG construction pipelines. This
design choice allows the proposed learning framework to be evaluated under realis-
tic operational conditions and enables each decision to be traced back to concrete
infrastructure elements and timing data familiar to practitioners.
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Paper Micro | AG | MILP | Heur. | RL | Seq. Dec. | Feasible | Real Data | Main limitation
Cacchiani - - v v - - - - Survey: breadth, not
et al. (sur- method-specific.

vey) [3

Fischetti v - v - - v v - Scalability /  solve

et al. times for large dis-

(EJOR turbed instances.

2017) (6]

Aydin et v v v - - v v v Time limits under

al. (2023) heavy conflicts.

2

Agasucci v - - - v v - - Scalability challenges;

et al. limited network sizes.

(2023) [1]

Zhu v - - - v - - - Early RL work; syn-

(2020) [27] thetic/limited scenar-
ios.

Kim et al. v v - - v v - - Small-scale tests; lim-

(2023) [11] ited generalization re-
sults.

Liu (2024) v - - - v v - - Focus on single-track;

[13] limited topologies.

Yue et al. v v - - v v - - Advances scalability;

(2024) [24] needs broader indus-
trial validation.

Zhang et v v v - v v v - Hybrid

al. (2024) RL-optimization;

[26] carly-stage evaluation.

Veelenturf - — v — - - v - Macroscopic focus; not

(2016) [18] microscopic.

Josyula v - - - v - - - Practical decision-

(2024) [9] support focus; proto-
typing.

Su (2024) v - v - - v v - Integrated MILP

[17] + data-driven; still
compute-heavy.

This thesis v v - - v v v v Aims to combine AG
realism, RL speed and
benchmark against
OptDis.

Table 2.1 Comparison of representative railway timetable rescheduling approaches

In summary, the literature suggests three guiding principles that shape this work: the
Alternative Graph provides a robust microscopic foundation for both optimization
and learning; DQN with feasibility-aware action masking is a practical reinforce-
ment learning choice for discrete conflict resolution; and rigorous, scenario-matched
comparisons against industrial solvers are essential to assess real-time value. Fol-
lowing these principles, the present thesis contributes a LUKS-based data pipeline,
an AG-driven rescheduling environment with explicit feasibility checks, a masked-
action DQN agent, and a systematic benchmark against OptDis under realistic time
constraints.

While recent studies explore practical decision support and hybrid learning—optimization
frameworks, many either rely on simplified settings or remain computationally heavy.
This thesis differs by combining an industrial-grade Alternative Graph model with re-
inforcement learning, enabling fast, feasible conflict resolution and systematic bench-
marking against a state-of-practice solver using real operational data.
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2.3 Industrial Railway Rescheduling Tools

In this thesis, the primary industrial reference and benchmarking baseline is the
LUKS (Leistungsuntersuchung Knoten und Strecken) tool [8] developed and used
at Quattron GmbH. LUKS is employed in operational and planning contexts to
analyze railway node and corridor performance and to resolve timetable conflicts
under disturbances. Its rescheduling component, OptDis, formulates conflict resolu-
tion as a Mixed-Integer Linear Programming problem and is capable of producing
high-quality feasible schedules under a wide range of operational constraints. LUKS
and OptDis [22] were selected as the reference tools for this work for several rea-
sons. First, they are actively used in an industrial setting, making them a relevant
and credible baseline for evaluating practical rescheduling approaches. Second, the
availability of realistic infrastructure, timetable, and disturbance data exported from
LUKS enables a consistent and reproducible experimental setup. Finally, OptDis
[21] represents a state-of-practice optimization-based approach, providing a strong
benchmark against which alternative methods can be fairly assessed under matched
time and scenario constraints.

Several other tools and frameworks exist for railway timetable analysis and reschedul-
ing. Commercial systems such as RailSys, OpenTrack, and TPS provide microscopic
simulation and timetable analysis capabilities and are widely used for planning and
capacity studies. However, these tools primarily focus on simulation-based evalu-
ation rather than automated conflict resolution under tight operational time con-
straints.

In the academic domain, various optimization- and heuristic-based rescheduling
frameworks have been proposed, often tailored to specific networks or problem vari-
ants. While these approaches provide valuable insights, they are typically not inte-
grated with industrial data pipelines or deployed in real operational environments.

Despite their strengths, these alternative tools are not used as primary baselines in
this thesis. Many commercial systems do not expose internal decision mechanisms
or provide programmatic interfaces suitable for systematic benchmarking under con-
trolled time budgets. Similarly, academic prototypes often rely on simplified or syn-
thetic datasets, limiting their suitability for direct comparison with industrial-grade
rescheduling approaches. In contrast, LUKS and OptDis provide both realistic data
access and an established optimization-based rescheduling method, making them
well suited for the objectives of this work.

2.4 Railway Infrastructure Model

The conflict resolution problem addressed in this thesis is defined on a microscopic
representation of railway infrastructure derived from operational planning data ex-
ported from the LUKS system shown in Figure 2.1. The infrastructure model pro-
vides the physical and logical constraints within which train movements must be
scheduled and rescheduled.
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Figure 2.1 Infrastructure Element Export

2.4.1 Infrastructure Elements

The railway network is decomposed into a finite set of infrastructure elements, each
of which represents a safety-critical resource that can be occupied by at most one
train at a time. The primary element types considered are:

e Main signal blocks, representing fixed-block track sections protected by main
signals;

e Switch blocks, representing turnouts and junctions where multiple routes in-
tersect;

e Terminal blocks (Gleisende), representing track ends and buffer stops.

Each element is uniquely identified and associated with a physical position (kilometer
reference), track context, and direction of travel. For modeling and experimentation
purposes, an Example Railway Network and trains are taken as shown in Figure 2.2,
and elements are treated as discrete blocks that enforce exclusive occupancy con-
straints between trains.

Train A
—}
1 \ ! / \ 1 Z
T LI LI
Trai ¢
rgln Train B

Figure 2.2 Example Railway Network, trains

2.4.2 Train Routes and Block Occupation

Each train follows a predefined route through the infrastructure, represented as an
ordered sequence of blocks as shown in Figure 2.3. For every train—block pair, the
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planned timetable specifies an entry time and an exit time, defining the temporal
occupation of that block by the train. These times implicitly capture running,
approach, clearance, and release intervals, consistent with the blocking-time stairway
concept used in railway capacity analysis.

Multiple trains may traverse the same block, potentially in opposite directions or via
different routes through switches. Whenever two trains request the same block dur-
ing overlapping time intervals, an infrastructure conflict arises and must be resolved
by imposing a temporal ordering.

Train A
_—

Block 1 N Block 3

M SN

! Block 2 T Block4 I ! Block 6 T

Train C
Train B

Figure 2.3 Example Railway Network, trains with blocks Notation

2.4.3 Types of Conflicts
Two principal conflict patterns occur in the considered infrastructure:

e Switch conflicts, where trains approach a shared switch block from different
directions or routes and cannot occupy it simultaneously;

e Signal block conflicts, where trains compete for the same main signal block,
typically in opposite directions or with insufficient headway separation.

In both cases, safety regulations require that one train fully clears the block before
the other is allowed to enter, enforcing a strict precedence relation.

2.4.4 Mapping Infrastructure to the Alternative Graph

The infrastructure model forms the basis for the construction of the Alternative
Graph (AG). Each visit of a train to a block is represented as a node in the AG,
encoding the planned and actual timing of that event as shown in Figure 2.4. Fixed
arcs connect successive nodes of the same train and represent mandatory intra-train
precedence constraints derived from the route structure and minimum running times.

The Alternative Graph represents train—block events and precedence constraints,
enabling conflict resolution through iterative precedence selection and timing prop-
agation.

In the example Railway Network, considering Train A moving from block 1 to block
5 through block 4 and Train C moving from block 2 to block 5 through block 4 then
the alternative graph looks like as shown in Figure 2.4

Conflicts arising from shared infrastructure blocks are represented by pairs of alter-
native arcs [11]. Each pair corresponds to a binary precedence decision between two
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Figure 2.4 Alternative graph of Example Railway Network, trains

trains competing for the same block, expressing the two feasible orderings in which
the block can be allocated. Selecting one alternative arc enforces a specific train
ordering and removes the opposite option from consideration.

This representation preserves a direct correspondence between physical infrastruc-
ture constraints and graph-based scheduling decisions, enabling both exact opti-
mization and reinforcement learning methods to operate on a common, interpretable
model of railway operations [15][20].

Role in the Reinforcement Learning Environment

Within the reinforcement learning environment, unresolved conflicts in the Alter-
native Graph correspond to discrete precedence decisions on shared infrastructure,
whose timing effects are propagated through the graph.
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Design

This chapter describes the design and implementation of a reinforcement learn-
ing—based framework to resolve train timetable conflicts using the Alternative Graph
(AG) model and Deep Q-Network (DQN) techniques. The chapter focuses on how
the rescheduling problem is formulated, how operational railway data are trans-
formed into a graph-based representation, and how this representation is embedded
into a reinforcement learning environment suitable for sequential decision-making.

The framework centers on the design and implementation of a flexible reinforcement
learning environment for train timetable rescheduling, closely integrated with data
and operational models exported from Quattron’s LUKS software. The process be-
gins with the extraction, cleaning, and structuring of railway network and timetable
data, producing consistent datasets that capture detailed block occupancy and tim-
ing information. These data are then used to construct the Alternative Graph,
in which nodes represent train—block events and arcs encode both fixed intra-train
precedence constraints and alternative conflict relations. Edge weights and feasibility
checks are defined to ensure that all generated schedules satisfy operational timing
constraints. An overview of the proposed design framework is shown in Figure 3.1.

Figure 3.1 illustrates the end-to-end workflow of the proposed framework, start-
ing from a disturbed railway timetable, followed by data extraction and Alterna-
tive Graph construction, environment modeling, and DQN training, and concluding
with the evaluation and comparison against OptDis to produce a conflict-resolved
timetable. The individual phases of this pipeline and their implementation details
are described in depth throughout this chapter.

The reinforcement learning environment is implemented as a modular Python frame-
work and modeled as a Markov Decision Process (MDP) to support step-by-step
conflict resolution. The state representation encodes the current configuration of
the Alternative Graph, including planned and propagated event times and unre-
solved conflicts. The action space consists of feasible conflict-resolution decisions,
where each action assigns precedence to one train on a shared block. Applying an
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Disturbed Railway
Timetable

Phase 1:

Data Extraction and Processing
* LUKS infrastructure and timetable data
Block occupation and train routes

Phase 2:
Alternative Graph Construction
* Nodes: train-block events
* Fixed arcs: route precedence

Disturbance injection and normalization

 Alternative arcs: conflict modeling

Phase 3:
Environment Modeling
State, Action, Reward

* State: graph-based features
¢ Actions: precedence selection
* Reward: delay and feasibility

Phase 4:
Training the DQN Network
¢ Episodic interaction with environment
* e-greedy exploration
» Target network updates

Phase 5:
Evaluation, Analysis and
Comparison with Optdis Conflict-Resolved
* Delay metrics (total, max) Timetable

* Generalization tests
e Comparison with OptDis

Figure 3.1 Pipeline of the proposed design framework

action updates the graph structure, propagates timing constraints, and updates de-
lay measures, while the reward function provides feedback based on changes in a
delay-based objective.

All experiments were conducted with a set of fixed random seeds, and intermediate
artifacts including processed datasets, Alternative Graph snapshots, trained models,
and logs were maintained to allow exact reruns and reproducibility of results.

Deep Q-Network Architecture

The reinforcement learning agent employed in this work is based on a Deep Q-
Network (DQN), which uses an artificial neural network to approximate the action-
value function. The neural network maps the current environment state to Q-values
for all admissible actions, representing the expected cumulative reward associated
with each conflict-resolution decision.

In the context of train timetable rescheduling, the network input consists of a com-
pact state representation derived from the Alternative Graph, encoding delay infor-
mation and conflict characteristics. The network output corresponds to precedence
decisions between conflicting train movements. By selecting actions that maximize
the estimated Q-values, the agent learns a policy that resolves conflicts while mini-
mizing delay propagation.

A target network and experience replay are employed during training to stabilize
learning and improve convergence. These techniques allow the agent to learn effective
conflict-resolution strategies from repeated interaction with the environment.
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MDP and Learning Formulation

The sequential resolution of conflicts in the Alternative Graph (AG) is modeled
as a Markov Decision Process (MDP) defined by the tuple (S, .4, P,r,~y). A state
s € § encodes the current configuration of the AG, including propagated event
times, timing slack information, and the set of unresolved conflicts. The action space
A(s) consists of feasible conflict-resolution decisions, where each action commits a
precedence choice between two trains competing for the same infrastructure resource.
Action masking is applied so that only unresolved and feasible conflicts are available
at each decision step.

The transition function P(s’ | s,a) fixes the selected alternative arc in the AG,
removes its opposing arc, and propagates timing constraints through the graph. If
this propagation results in an infeasible configuration, such as the creation of a
negative cycle, the action is rejected or penalized.

The reward function is defined to directly reflect the objective of delay minimization.
The step reward is computed as the reduction in total delay,

r(s,a,s’) = ATD = TD(s) — TD(s'), (3.1)

where the total delay is given by

Z Z max{0, ;% (s —tplan} (3.2)

keT meMy

Here, T denotes the set of trains, M, the set of relevant milestones for train k, tilan

the planned time, and #; (s) the current propagated feasible time. The discount
factor v balances short- and long-term effects of precedence decisions.

To obtain fast conflict-resolution decisions, the optimal action-value function Q*(s, a)
is approximated using a Deep Q-Network (DQN). The optimal value function satis-
fies the Bellman optimality equation

Q*(s,a) = E[?”r’yrrzaXQ*(S’,a')

s, a] : (3.3)

In practice, a neural network Qg(s, a) is trained by minimizing the temporal-difference
loss

[’(9) = E(s,a,r,s’) |:(7’ + ’anﬁx Qé(slv a/) - QG(Sv a))Q] ; (34)

where (05 denotes a slowly updated target network used to stabilize training. During
both training and inference, action masking is applied to the Q-values so that only
feasible conflict-resolution actions participate in the maximization operator.

3.1 Data Extraction and Processing

This project focuses on extracting, cleaning, and structuring railway network and
train schedule data from various LUKS software exports (Excel and XML). The
resulting datasets are suitable for analysis, timetable modeling, and reinforcement
learning experiments.
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A modular data pipeline converts data that is initially exported from Leistungsun-
tersuchung Knoten und Strecke (LUKS) into consistent infrastructure and timetable
datasets, normalizes element names and IDs, reconstructs per-train paths with kilo-
meter positions, and builds time-ordered segment traversals from occupancy files.
These aligned artifacts are used to construct AG instances that reflect both network
structure and planned operations.

The result is a reproducible pipeline: data processing with pandas, graph mainte-
nance with networkx, structured spreadsheet outputs for inspection, and an envi-
ronment API with reset/step semantics. The framework is designed to generalize
beyond a single case study, allowing support for new networks and timetables with
minimal changes and enabling hybrid use—standalone decision support or warm
starts for MILP.

3.1.1 Data Sources

In an initial step the pipeline starts from structured exports produced in LUKS.
From the infrastructure side, we use the element list that includes switches, main
signals, and end-of-track markers ( Gleisende), together with their line/track context
and kilometer positions. From the timetable side, we use the running-time export
that lists, for each train, the sequence of visited infrastructure elements and the
corresponding times; when available, we also use occupancy /timing sheets to obtain
explicit entry (Anf) and exit (Ende) times on segments. All names are normalized
to a canonical form (uppercasing, whitespace trimming, standard type tags) so that
the timetable text can be matched back to the infrastructure dictionary. Kilometer
values are parsed from the same fields and stored as numeric references, which we
later use to sort events and to validate running/clearance times.

A small but important convention is that physical segments are identified once,
independent of direction, while the travel direction itself is carried as a separate
attribute in the timetable layer; this keeps combining stable when multiple trains
traverse the same track in opposite directions. Finally, the sources are read into
data frames and persisted as intermediate tables so that each transformation step
can be audited.

Three kinds of LUKS exports are utilized: i) an infrastructure export copied from
the “Infrastructure” tab in LUKS provides the authoritative list of track elements
(main signals, switches, and end-of-track markers) together with their attributes
(line/track context, kilometer positions, and identifiers); ii) a timetable export sup-
plies, for each train, the planned sequence of visited elements and scheduled times;
this is our basis for reconstructing direction and ordering along the corridor. iii) a
set of per-train occupation sheets gives block-entry and block-exit timestamps at
a finer resolution, which we use to attach precise arrival and departure times to
train—segment traversals and to validate headways and clearances during graph con-
struction. Throughout the pipeline, element names are normalized and mapped to
stable global IDs so that these sources can be joined reliably without depending on
specific file names.
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3.1.2 Network generation overview.

The infrastructure network is transformed into a direction-agnostic segment repre-
sentation that serves as a stable backbone for timetable alignment. Each physical
connection is assigned a unique segment identifier independent of travel direction,
while direction is stored as an attribute at the timetable level. From this represen-
tation, admissible ordered segment pairs are enumerated to capture local continuity
constraints around signals, switches, and terminals. The process is described in Alg.
1, iterating ...

Input: Infrastructure element list exported from LUKS
Output: Segment inventory and admissible segment-pair grammar

foreach infrastructure connection (u,v) do
L normalize element names and types assign a unique Segment_ID to the un-

ordered pair {u, v}
foreach segment do
| enumerate admissible same-direction successor segments
add terminal connections (Gleisende) where applicable

Algorithm 1 Infrastructure Network Generation

3.1.3 Outputs and Structure

The previously described process produces two main spreadsheet outputs that act
as a clean interface to the scheduling model. The infrastructure side is captured,
which lists the canonical segment inventory (each with a direction-agnostic Seg-
ment_ID) and all admissible ordered segment pairs that define legal continuity in
the network. This file is independent of any timetable and can be reused across
scenarios. The timetable side is also captured and it contains, for each train, the
time-ordered sequence of realized segment pairs with resolved IDs, names, and nu-
meric from_km/to_km; when available, arrival and departure times are attached to
each pair so that running and clearance can be checked later. Because both outputs
share the same segment IDs, multiple trains naturally reference the same physical
resource, and opposing movements remain consistent by construction.

These tables are then lifted into the Alternative Graph: nodes are created as
train—block (segment) events with planned and mutable times; fixed arcs come from
the intra-train order implied by the per-train list; and alternative arcs are generated
wherever two or more trains request the same segment (or segment pair) within
overlapping windows. With stable IDs, explicit terminal handling via Gleisende,
and kilometer-based ordering, the AG remains easy to audit, and the resulting envi-
ronment exposes a compact, reproducible state to the DQN agent without special-
case logic downstream. For each segment/block traversed by every train, the train
schedule input file includes:

e trainname: Train identifier
e direction: Direction of travel

e order: Sequential order in the route
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e network segment_id: Unique segment identifier
e Anf: Entry time for the segment

e Ende: Exit time for the segment

This forms a time-ordered mapping of train movements across the network. Here
are the technical details used in the data extraction process:

e Utilizes pandas for data manipulation and cleaning.
e Employs regular expressions for robust parsing of text fields.

e Ensures consistency by globally mapping elements and segments to unique IDs.

3.2 Data and Alternative Graph Construction

This section describes how the processed timetable and infrastructure data are con-
verted into a consistent Alternative Graph (AG) together with a set of explicit con-
flict decisions suitable for reinforcement learning or search-based methods.

The role of this generator is strictly constructive: it produces the graph structure,
timing constraints, and conflict sets. The formal definition of the Markov Decision
Process (state, action, reward, and transition dynamics) is deferred to Section 3.4.

3.2.1 Input Signatures and Invariants

The generator consumes two tab-separated input files derived from the outputs of
Section 3.3:

e A network file describing directed physical connections between blocks as tu-
ples (from_block, to_block, direction, distance). This file defines the physical
backbone of the corridor.

e A train file listing time-stamped visits of blocks by trains as (train_id, direction,
order, block, ¢, taep), Where times are given in HH:MM: SS format.

The network parser builds a directed graph Gp = (Vp, Ep) where edges carry direc-
tion and distance attributes. All blocks encountered are indexed exactly once and
stored in a stable list used later for compact encodings and reproducibility.

The train parser converts times into seconds since midnight and constructs a node-
Info object for each train—block visit. Two sentinel nodes are added: a dummy
start node (index 0) and a dummy end node (index N — 1). Each node stores for-
ward and backward pointers (next_fixed_node, prev_fixed_node) that will later
encode intra-train precedence.
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3.2.2 Construction of Fixed Arcs

Fixed arcs encode mandatory intra-train precedence constraints derived from the
planned route order and minimum running or dwell times. Dummy start and end
nodes anchor all trains to a common temporal reference. The process is described
in Alg.2,

Input: Train routes with ordered block visits
Output: Fixed precedence arcs in the Alternative Graph
foreach train k do
foreach consecutive block wvisit (i, j) of train k do
| add fixed arc i — j with weight —d;;
connect start node to the first block visit of train £ connect the last block visit
of train k£ to the end node

Algorithm 2 Fixed Arc Construction

3.2.3 Alternative arcs and conflict filtering

Conflicts occur when multiple trains request the same physical block. Each conflict is
encoded as a pair of mutually exclusive alternative arcs representing the two possible
precedence orders. Boundary conflicts near terminals are resolved deterministically
to reduce the action space. The process is described in Alg.3,

Input: Alternative Graph with shared block usage
Output: Filtered set of feasible alternative arcs
foreach shared block b do
foreach train pair (i,7) using block b do

| create alternative arc pair (i < j) and (j < 1)

foreach alternative arc do

if boundary or deterministic case then
| fix precedence and remove the alternative arc

Algorithm 3 Alternative Arc Enumeration and Filtering

3.2.4 Feasibility Checking and Objective Evaluation

Feasibility and schedule quality are evaluated using single-source Bellman—Ford re-
laxations on G 4. The helper function cost((G4) first checks for negative cycles.
If one is detected, the graph is infeasible and a sentinel value (BigM) is returned.
Otherwise, the weight of the path from the dummy start to the dummy end node is
returned.

Because all constraints are encoded with negative weights, minimizing this path
weight corresponds to maximizing feasibility. In the learning environment, the ob-
jective is defined as the negated cost, so lower delay yields higher return.
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For diagnostics and reward shaping, additional routines extract per-train delay pro-
files from the Bellman—Ford distances. For a node n, the realized departure time is
obtained as

jact _ —{(next_fixed_node(n)), if successor exists,

" —{(n), otherwise,
and the instantaneous delay is 6, = t2* —¢Plan These quantities support the compu-
tation of first /last delays per train and the largest delay increments acquired between
consecutive blocks.

3.2.5 Outputs and Interface to the Environment

The generator produces three artifacts:

e a fully constructed Alternative Graph with fixed and unresolved alternative
arcs;

e a list of unresolved conflict records corresponding to feasible decisions;

e node metadata required for timing propagation and delay analysis.

These artifacts define the initial state of the reinforcement learning environment. No
MDP semantics are imposed at this stage: the generator is agnostic to how conflicts
are selected or rewards are computed. This separation keeps data construction,
feasibility logic, and learning dynamics modular and auditable.

3.3 Cost, Delay, and Reward Formulation

The rescheduling problem is encoded as an AG with a dummy start node (index
0) and a dummy end node (index N—1). Fixed arcs carry run/dwell constraints;
alternative arcs represent unresolved conflicts. The graph cost is computed as the
shortest (most negative) path length from start to end using Bellman—Ford; if a
negative cycle is detected, a large penalty is returned. Precisely, the implementation
checks for a negative cycle and, if none exists, obtains the path 0 — N—1 and
its weight; otherwise it returns BigM (sentinel). In the environment, we maximize
—cost so that lower schedule delay corresponds to higher return.

ath_weight(0— N—1), if no negative cycle,
b ght( ) .g Y objective J = —cost(G).
BighM, otherwise,

cost(G) = {
(3.5)

Per-train delays are derived from single-source Bellman—Ford distances (0~»v). For
a node n with realized departure c/l\n and scheduled departure d,,, the instantaneous
delay is d,, = d,, — d,,. The code computes per-train first/last delays and the largest
increment in delay acquired between consecutive blocks (as well as the largest ear-
liness decrease), which are later used for reward shaping and constraint caps. Let
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At denote the episode maximum over trains of positive per-block delay increments;

let A- . denote the maximum magnitude of negative (earliness) increments.

The one-step reward combines an objective improvement term with soft penalties
for monotonicity and capped increments. With J, = —cost,, the base dense reward

. . . Ji—J .. . L.
is a normalized improvement 7,,; = m Monotonicity discourages finishing a

train with more delay than at its first block, i.e., >, max(0, 554 — &%), Conflict-
induced lateness increments and earliness increments are softly capped by user-set
thresholds conflict_delay_cap and early_cap. The environment aggregates these
with weights wWobi, Wmonos Weap, Wearly, and adds a tiny step penalty to encourage
shorter episodes:

Ty =

Je — Jipa Z maX(O, 5;3nd _ 5Zstart)

o (1, [ ) i C

— Weap * P(A,, conflict_delay_cap) — Wealy - #(Apay, early_cap)
— step_pen
(3.6)

where C'is a delay normalization constant and ¢(z,7) = max(0,  — 7)/7 is a soft
hinge. Terminal reward equals —cost at “Finish,” with hard penalty for infeasibility
(negative cycle). The environment also tracks episode metrics such as the maximum
final delay across trains for logging and analysis.

A DQN agent is trained within this environment, utilizing techniques such as epsilon-
greedy exploration, experience replay, and a target network for stability. The reward
function is designed to incentivize the agent to minimize delays and efficiently resolve
conflicts.

3.4 Modeling the Environment

This chapter describes the design of the reinforcement learning environment for train
timetable conflict resolution. The environment builds on the Alternative Graph
representation of the railway infrastructure and timetable, and is formulated as a
Markov Decision Process that enables sequential resolution of conflicts. The current
AG encodes the state; an action selects one unresolved alternative arc; and the
transition fixes precedence, removes the opposite arc, and propagates earliest feasible
times. Feasibility is maintained through longest-path updates and negative-cycle
checks; masking ensures only valid conflicts are presented.

3.4.1 Overview

The environment operationalizes the timetable rescheduling of trains as a finite-
horizon MDP layered on top of an AG. Each episode starts from a feasible (or
near—feasible) AG built from the current timetable and network, and proceeds by
repeatedly selecting a contested block and exposing/committing precedence relations
until (i) all conflicts are resolved, (ii) the agent declares Finish, or (iii) feasibility is
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violated (negative cycle). All timing quantities, rewards, and feasibility checks derive
from a single Bellman—Ford pass on the current AG, ensuring consistent semantics
across state, transition, and objective. Curriculum schedules for caps on per—block
delay increments stabilize training, and a compact state encoder keeps dimensions
fixed while the underlying graph evolves.

3.4.2 MDP Components in the Environment

The rescheduling problem is formulated as a Markov Decision Process (MDP) de-
fined by the tuple (S,.A,P,R,v) as shown in Figure 3.2, where the environment
encapsulates the Alternative Graph (AG) and enforces all feasibility constraints [16].

State Action

(Current Alternative Graph) (Alternative arc)
Neural Network

Reward
(Delay of Trains)

Learning Environment

L Reward MSE Error State Transition Function |
Function Generation (Alternative Graph)

Figure 3.2 Reinforcement Learning Framework

The state space S consists of graph-derived features representing the current schedul-
ing situation, including both static infrastructure information and dynamic timing
and conflict-related attributes, as detailed in Section 3.4.6. The state is fully deter-
mined by the current configuration of the AG.

The action space A corresponds to unresolved conflicts in the AG. Each action
selects one precedence relation by fixing an alternative arc and removing its opposing
counterpart. Actions that would violate feasibility by introducing negative cycles
are excluded from the admissible action set.

The transition function P is deterministic. Given a state and an action, the en-
vironment updates the AG accordingly and propagates timing constraints through
longest-path computations.

The reward function R evaluates the effect of an action based on resulting train
delays and feasibility, as described in Section 3.4.7. The discount factor v € (0, 1]
controls the trade-off between immediate and future delay reduction.
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Value-based formulation rationale.

The rescheduling problem is modeled using a value-based formulation because each
decision commits a single, irreversible precedence choice whose impact unfolds over
subsequent conflict resolutions. Estimating action values therefore provides a natu-
ral mechanism to compare competing precedence decisions based on their long-term
effect on delay propagation. In contrast, policy-gradient methods learn stochas-
tic action distributions, which is less suitable in a feasibility-critical setting where
decisions are deterministic and must be evaluated sequentially.

3.4.3 Core Class Structure and Methods

The class Env encapsulates the lifecycle: __init__() loads the physical network and
schedule, builds the initial AG with dummy start/end, enumerates conflict records
(alternative arc pairs), applies boundary fixes, and initializes per—train queues. re-
set () reconstructs an episode (including optional random entry delays), reapplies
conflict enumeration /fixes, sets curriculum caps, caches start/end delays for mono-
tonicity checks, and returns the initial state. step(a) executes the transition de-
scribed above, recomputes objective and delay summaries, emits the shaped reward,
updates episode statistics (max final delay; max late/early increments; return), and
returns (s',r,done). Utility methods generate state features (ag_to_state()), de-
rive current block occupancy and next—block lookahead, and compute direction flags
and AG degrees at frontier nodes. All plotting/labels are cached for optional visu-
alization.

3.4.4 Environment Initialization

The initialization of the environment ties together data and graph builders. The
physical block graph G p and canonical block index list tc_list come from the gener-
ator; time—stamped train events are parsed into sequential node records with planned
arrival /departure; the AG is created by linking within—train fixed arcs (weights as
negative required durations) and dummy connectors; and conflict records are enu-
merated per block as symmetric alter pairs, then materialized on demand. A first
pass fixes trivial alter pairs at boundaries (those pointing to the dummy end) so the
action space presented early in an episode reflects only genuine choices. Caps (74, Te),
weights (Wobj, Weaps Wearly ), and the tiny step_pen are set here, along with counters
for feasible/optimal runs. All subsequent resets reuse these persistent objects to
avoid 1/O overhead.

3.4.5 Step Function and State Transitions

At each decision step, the environment receives a valid action corresponding to the
resolution of a single conflict. Applying an action fixes the selected alternative arc
in the AG and removes the opposing arc, thereby enforcing a precedence constraint
between two trains on a shared block.
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Features Dimension  Type
Number of total trains (Ny) 1 Static
Physical network (PN) |B| x |B] Static
Junction indicator (JI) |B| Static
Occupation indicator (OI) |B| Dynamic
Next occupation indicator (NI) |B| Dynamic
Upward direction (UD) |B| Dynamic
Downward direction (DD) |B| Dynamic
Occupation beginning time (OB) |B| Dynamic
Occupation ending time (OF) |B| Dynamic
AG node in-degree (ID) |B| Dynamic
AG node out-degree (OD) |B| Dynamic
AG cost (AC) 1 Dynamic

Table 3.1 Components of the state representation.

After the graph update, timing constraints are propagated using a longest-path com-
putation. If a negative cycle is detected, the resulting state is marked as infeasible
and assigned a penalty. Otherwise, the updated graph defines the next state.

This step function is fully deterministic and entirely handled by the environment.
The agent does not perform any feasibility checks or timing propagation.

3.4.6 State Representation

The environment state encodes both invariant infrastructure properties and dynamic
operational conditions derived from the Alternative Graph. The state is represented
as a structured collection of features rather than a single analytical expression.

Table 3.1 summarizes the individual state components, their dimensionality, and
whether they remain static or evolve during the episode.

The state representation is defined entirely at the environment level. Its semantic
meaning is independent of the learning architecture and remains unchanged through-
out training.

Table 3.1 summarizes the components of the state, together with their dimensionality
and update behavior.The Dimension column indicates the number of scalar elements
contributed by each feature to the state representation at a single decision step.
Here, B denotes the set of blocks in the physical network. Features with dimension
|B| are represented as block-indexed vectors, whereas features with dimension |B| x
|B| correspond to adjacency-style matrices describing network connectivity. Scalar
features have dimension 1.

All features are flattened and concatenated internally to form the final state vector
provided to the learning agent.
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3.4.7 Reward Structure and Objective

To successfully train the model, it required a reward functionality and a well defined
goal. Let J; = —cost(G;) be the objective before the step and [J;41 after. The
improvement term is
Fon; = Tt — T .
max(1, |7;|)

Monotonicity discourages trains ending with more delay than they started:

1 = max(0, Jend — gstart),

C - Cap

Caps penalize large single-block shocks using the global maxima of late/early in-
crements across trains, with thresholds (7, 7.) supplied by the curriculum. A small
step_pen encourages short episodes. On termination by Finish, the reward is —J;41
(good when schedules are tight and feasible); infeasibility returns —bigM. The en-
vironment also logs per—episode maxima (final delay, late/early increments) to aid
analysis and ablations.

Reward design rationale.

The reward is defined as the stepwise change in a delay-based objective to provide
immediate feedback on the effect of each precedence decision. A purely terminal
reward was considered but would delay learning signals until all conflicts are re-
solved, increasing variance and slowing convergence in episodes with many decisions.
The chosen shaping preserves alignment with operational objectives while improving
credit assignment and learning stability.

3.4.8 Summary of Environment Responsibilities

The environment couples a domain—faithful AG with a compact, stable state encoder
and a shaped reward that aligns local precedence choices with global delay reduction.
By inserting and checking alter edges inside the environment, feasibility is enforced at
the source; by deriving all timing quantities from the same Bellman—Ford pass, state,
reward, and termination remain coherent. Curriculum caps make early training
robust, while the block—indexed action space keeps inference fast. The resulting API
(reset/step) integrates well with value-based agents and supports reproducible,
auditable experiments and side-by-side benchmarking against MIP solvers.

The environment is responsible for constructing and maintaining the Alternative
Graph, identifying unresolved conflicts, enforcing feasibility through timing prop-
agation, and computing reward signals based on delay outcomes. Moreover, the
learning agent operates exclusively on the state, action, and reward interfaces pro-
vided by the environment and does not perform any graph consistency checks or
feasibility enforcement internally.
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3.5 Agent

This section describes the reinforcement learning agent responsible for resolving
conflicts in the Alternative Graph environment. The agent observes the current
graph state, selects feasible precedence decisions, and learns a policy that minimizes
delay propagation across the network.

The DQN agent approximates (s, a) over the masked action set and is trained with
standard stabilizers: e-greedy exploration, experience replay, and a target network.
Observations derive from AG features summarizing node timing and conflict avail-
ability; inference produces millisecond-scale decisions for tight dispatch windows.

3.5.1 Agent Overview and Role

The agent is implemented as a value-based reinforcement learning controller that op-
erates on the Alternative Graph (AG) environment. At each decision step, it selects
one unresolved conflict and commits a precedence relation between competing trains.
The agent does not construct full timetables directly; instead, it incrementally re-
solves conflicts while the environment enforces feasibility through timing propagation
and cycle detection.

A Deep Q-Network (DQN) is used to approximate the action-value function over the
discrete set of feasible conflict-resolution actions. Once trained, the agent produces
decisions in milliseconds, making it suitable for near real-time dispatching and for
use as a warm-start mechanism in hybrid optimization pipelines.

3.5.2 Network Architecture and Output Semantics

The agent employs a Deep Q-Network (DQN) to map a fixed-dimensional state
representation to action-value estimates over the discrete set of feasible conflict-
resolution actions. The input dimension S depends on the number of physical blocks
B in the environment and encodes timing, slack, and conflict availability information,
while the output dimension A = B + 1 corresponds to selecting a block to resolve or
terminating the episode.

The network follows a fully connected feed-forward architecture and produces one
Q-value per admissible action. A separate target network with identical structure
is maintained to stabilize temporal-difference learning. During inference, action
masking ensures that the greedy policy selects the highest Q-value among feasible
actions, or a dedicated Finish action when no unresolved conflicts remain.

3.5.3 State and Action Interface

The agent interacts with the environment through a fixed-dimensional state vector
derived from the current Alternative Graph. The state summarizes timing infor-
mation (e.g., earliest feasible times and delay measures) together with indicators
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of which conflicts remain unresolved. Feature normalization is applied so that the
magnitudes remain comparable between scenarios and episodes.

The action space is discrete and corresponds to unresolved alternative-arc pairs in
the AG. An action selects one such conflict and fixes its precedence. Action masking
is applied so that only feasible and unresolved conflicts are available to the agent at
each step, preventing illegal decisions and reducing the effective action space.

Action masking integrates naturally with value-based methods by removing infea-
sible actions directly from the maximization over QQ-values. This avoids the need
for penalty-based constraint handling or post-hoc correction, which are common in
policy-gradient approaches. In the AG environment, where feasibility is binary and
must be preserved at every step, masked Q-learning provides a clean and opera-
tionally safe solution.

3.5.4 Learning and Optimization

Learning is performed using standard DQN mechanisms. During training, the agent
balances exploration and exploitation using an e-greedy strategy, while experience
replay is employed to decorrelate updates and improve sample efficiency. A target
network is maintained to stabilize temporal-difference updates.

The loss function is derived from the temporal-difference error between predicted
and target Q-values. Optimization proceeds in mini-batches sampled from replay
memory, and periodic target-network updates prevent oscillatory behavior. These
design choices follow established best practices for stable value-based reinforcement
learning and are well suited to the discrete, masked action space induced by the AG.

A Deep Q-Network (DQN) is selected over policy-gradient methods such as Proximal
Policy Optimization (PPO) due to the discrete and dynamically masked action space
induced by the Alternative Graph. In this setting, DQN enables direct comparison of
feasible precedence decisions through action-value estimates while naturally support-
ing action masking. Moreover, value-based learning avoids the additional variance
introduced by stochastic policy updates, which simplifies stabilization when large
portions of the action space are infeasible.

3.5.5 Integration, Stability, and Limitations

The agent is deeply integrated with the environment through a step-wise interaction
loop: each selected action updates the AG, triggers timing propagation, and yields
a reward reflecting the change in delay objective. Episode termination occurs when
all conflicts are resolved, feasibility is violated, or a predefined stopping condition is
met.

Several measures are incorporated to enhance numerical stability and traceability, in-
cluding bounded rewards, controlled discounting, and consistent logging of decisions
and timing outcomes. Although the agent performs well on the studied corridors,
its behavior remains sensitive to reward design and state abstraction. These limi-
tations motivate further investigation into richer graph-based encoders and hybrid
learning—optimization strategies.
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Evaluation

This chapter evaluates the proposed reinforcement-learning framework under con-
trolled disturbance scenarios and presents a comprehensive evaluation of the pro-
posed RL framework for conflict resolution and delay management in railway traffic.
The evaluation focuses on three main aspects: (i) learning behaviour under different
reward designs, (ii) robustness with respect to caps and hyperparameters, and (iii)
comparison with an industrial optimization-based solver.

The analysis focuses on two distinct reward formulations that influence the dispatch-
ing agent’s behaviour. The first formulation, referred to as Model A (Lateness-Only
Reward), solely penalises positive delay increments. The second formulation, re-
ferred to as Model B (Balanced Lateness—Earliness Reward), extends the reward
design by incorporating penalties for both excessive lateness and excessive earliness.
This adjustment reflects the operational reality that both, early and late running,
may disturb scheduled crossing patterns, overtaking arrangements, and dwell-time
structures. Model C (Curriculum based), uses the same AG state and block-indexed
action space as in earlier models, but trains them under a curriculum that schedules
the per—block increment caps used in the reward

All models were evaluated on an identical rail corridor, described in simple_net-
work.txt, and the same timetable instance from simple_train.txt. The agent
employs the DQN architecture, trained for approximately 22,000 episodes under
identical disturbance conditions generated through the stochastic entry-delay model.
The evaluation uses three principal performance metrics: (i) the Linear Program-
ming(LP) objective value, which captures the quality of the underlying event graph,
(ii) the maximum end-of-train delay, and (iii) the total episode return. Each metric
is visualised as a 100-episode moving average.

Within this evaluation, the solution quality (total/max delay, makespan, where ap-
plicable), runtime (time-to-first-feasible, time-to-best-found), and scalability with
respect to network size, traffic density, and the presence of simultaneous conflicts
are reported. Ablations isolate the impact of reward design, masking, and feature
choices.
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The proposed reinforcement learning approach was evaluated quantitatively against
the industry-standard OptDis solver, which is based on Mixed-Integer Linear Pro-
gramming, as well as against established heuristic baselines. All methods were tested
on matched disturbance scenarios derived from realistic railway data and under com-
parable time constraints. Performance was assessed using key operational metrics,
including total and maximum delay, computation time, time to first feasible solution,
and scalability with increasing traffic density and conflict complexity. In addition,
experiments with simulated disturbances of varying magnitude were conducted to
assess the robustness and generalization behavior of the trained agent within a fixed
infrastructure topology.

4.1 Learning Behaviour and Reward Design

4.1.1 Performance of Model A (Lateness-Only Reward)

The learning behaviour of Model A illustrates the capability of an RL agent to sub-
stantially reduce delay propagation when guided solely by lateness-focused reward
shaping. Figure 4.1 shows the evolution of the LP objective over the training hori-
zon. During the initial episodes, the objective exhibits considerable volatility due to
extensive exploration and the unstructured allocation of alternative arcs. However,
once the agent accumulates sufficient experience—typically after the first 8,000 to
10,000 episodes—the LP objective begins to improve steadily, ultimately converging
near an LP cost of—31,000. This improvement indicates that the agent learns to con-
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Figure 4.1 100-episode moving average of LP objective value under Model A (Lateness-Only
Reward).
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struct event graphs that avoid infeasible delay cascades and minimise accumulated
lateness.

A similar trend can be observed in the maximum end-of-train delay, shown in Fig-
ure 4.2. The initial maximum delays frequently exceed 1,500 seconds, reflecting
severe conflict propagation during early exploratory behaviours. As learning pro-
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Figure 4.2 100-episode moving average of maximum end-of-train delay for Model A.
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Figure 4.3 Evolution of episode return for Model A (100-episode moving average).
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gresses, the agent consistently selects actions that mitigate headway violations and
reduce the accumulation of conflict-related delay. By the end of training, the max-
imum delay metric stabilises between 200 and 400 seconds. This represents a re-
duction of more than 75% from the initial baseline and demonstrates that the agent
has learned to prioritise critical trains and resolve conflicts before they generate
downstream congestion.

The episode return, shown in Figure 4.3, confirms the convergence observed in the
other performance metrics. Since the return is composed of incremental LP improve-
ments, monotonicity penalties, and lateness-related soft constraints, the consistently
increasing return indicates that the agent becomes progressively better at satisfying
both local and global optimisation criteria. The relative smoothness of the return
curve after mid-training suggests that the reward signal is sufficiently dense and
stable to enable long-term credit assignment in the DQN training loop.

Overall, Model A demonstrates excellent performance in aggressively reducing delay
propagation. However, as will be discussed later, this aggressive minimization of
lateness may come at the cost of operational realism, as the agent occasionally
adopts schedules that compress running times in a way that would be unsafe or
impractical in real operations.

4.1.2 Performance of Model B (Balanced Lateness—Earliness Re-
ward)

Model B introduces an additional penalty on trains that have arrival times prior
to their defined schedule. In real-world railway systems, excessive earliness can be
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Figure 4.4 Episode return for Model B (Balanced Lateness—Earliness Reward).
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100-episode Moving Average — Max Delay
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Figure 4.5 Maximum end-of-train delay for Model B (100-episode moving average).

nearly as problematic as excessive lateness, especially in corridors with tightly syn-
chronized meets, overtakes, or platform slot assignments. The purpose of Model B is
thus to investigate whether the RL agent can achieve a balanced solution: one that
reduces delay while simultaneously maintaining adherence to the planned timetable.
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Figure 4.6 LP objective convergence for Model B.
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Figure 4.4 shows that the episode return under Model B increases steadily and
smoothly, indicating that the augmented reward structure does not hinder conver-
gence. The curve rises from approximately —55,000 to around —52,200, mirroring
the trends observed in Model A but with slightly different magnitudes due to the
symmetric shaping of the reward. Learning remains stable throughout, demon-
strating that the additional penalty does not introduce reward-sparsity or impede
temporal credit assignment.

The maximum delay curve for Model B Figure 4.5 reveals a subtle but important
distinction. Although the maximum delay exhibits the expected monotonic down-
ward trend during training, the final stabilised value lies in the range of 400 to 600
seconds, slightly higher than for Model A. This behavior is consistent with the in-
tended purpose of the symmetric reward: by discouraging excessive earliness, the
agent cannot simply compress running times or prematurely schedule certain train
movements to avoid lateness. Instead, it converges to solutions that retain a mod-
erate amount of delay but preserve realistic temporal alignment with the planned
timetable. Importantly, this is not a failure; rather, it represents an operationally
meaningful trade-off between strict delay minimization and timetable adherence.

The LP objective for Model B, displayed in Figure 4.6, exhibits a convergence pattern
very similar to that of Model A. Despite the additional constraints imposed by the
earliness penalty, the agent continues to discover feasible and efficient configurations
of the event graph. The steady upward trend towards values near —31,000 indicates
that the agent can negotiate the trade-offs imposed by the reward structure while
still improving global feasibility and conflict resolution.

4.1.3 Performance of Model C (Curriculum based Reward)

Model C uses the same AG state and block—indexed action space as in earlier models,
but trains under a curriculum that schedules the per—block increment caps used in
the reward. Let J; = —cost(G;) be the “good-sign” AG objective (larger is better).
The one—step reward is

Je — Tina 1 d max(0, A — 1)
o ———————— — — 07 gend _ gstarty en ) max
v "I max(1, 7)) O;max{ ‘ P = Weap max(1, 1)
Ty =
t _ max(0, Al —T)
Wearly step_pen,

max(1,7.)
(4.1)

with terminal reward —J;1; on Finish and a hard penalty —BigM for infeasibil-
ity. Here &'t 5524 are the start/end delays of train 4, Al and A, are the
episode—current maxima of late/early per—block delay increments, and (7, 7.) are
the caps driven by the curriculum (easy — target — hard — target). Unless noted,
Wohj=1.0, Weap=90.0, Weary=50.0, C' = 74, and step_pen is small. The only differ-
ence from prior models is this cap schedule; all other environment /agent settings are

unchanged.

Training progresses in distinct regimes that align with cap changes. When caps
tighten, the same action sequences incur larger hinge penalties, so the moving av-
erages dip sharply before the policy re-adapts. When caps relax, temporary spikes
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Figure 4.7 Model C — LP objective (100—episode MA). Short drops at cap switches, followed
by higher steady plateaus.
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Figure 4.8 Model C — Episode return (100—episode MA). Sharp dips at phase changes;
recovery to higher plateaus after adaptation.

appear and then settle. Overall, after each transition the agent returns to a narrower,
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Figure 4.9 Model C — Maximum end delay across trains (100-episode MA). Temporary
increases at tighter caps; lower level and variance in steady state.

lower—variance band, indicating that it re—learns precedence choices that satisfy the
new limits while preserving objective gains.

Figure 4.7 shows the 100—episode moving average of the AG objective (LP cost;
higher —cost is better). The series exhibits short, well-localized drops at curriculum
boundaries followed by recovery to higher plateaus. Because the improvement term
is normalized by max(1, | 7;|), the signal remains informative even as absolute values
change. Late in training, variance shrinks and the trend is upward, consistent with
more consistent precedence choices under stable caps.

Figure 4.8 plots the 100—episode moving average of the episode return. Return
mirrors the curriculum: when caps tighten, the harsher hinge terms reduce per—step
rewards and the curve falls; as the policy adapts, return rebounds and stabilizes.
The late—training plateau sits above the early phase, showing that the agent can
meet stricter caps without sacrificing overall objective improvement.

Figure 4.9 shows the 100-episode moving average of the mazimum end delay across
trains. During cap tightening, the worst—case delay briefly rises (the policy trades
some lateness to eliminate large early releases). After adaptation, both the level
and variability of the maximum delay decline. This behaviour is consistent with
the monotonicity term in the reward and with delay propagation in the AG: local
precedence decisions reduce downstream shocks.

Figure 4.10 reports the 100-episode moving average of the mazimum earliness in-
crement. Early in training the curve descends steadily from high values, indicat-
ing fewer premature releases. Each curriculum boundary produces a visible jump
(penalty strength changes), followed by a return to a tighter band. The final regime
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Figure 4.10 Model C — Maximum earliness increment (100—episode MA). Regime shifts align
with cap updates; steady tightening over time.

shows markedly lower and less volatile earliness spikes, meaning the agent avoids
unrealistically early clearances while retaining throughput.

Taken together, the four signals show that the curriculum does what it intends:
it drives exploration under stricter per—block limits, the shaped reward translates
cap compliance into useful gradients, and the policy adapts after each phase to
recover and surpass previous performance. In operational terms, Model C learns
precedence patterns that curb both large premature releases and large late shocks,
while improving the aggregate timing objective. This replaces the previous Model C
text and matches the environment’s reward and cap schedule used to generate the
plots.

Summary

This section demonstrates that reward design has a decisive impact on learning sta-
bility, convergence speed, and delay distribution. Model A, relying solely on lateness
minimization, converges quickly but exhibits higher variance and occasional extreme
delays. Introducing balanced lateness—earliness penalties in Model B improves sta-
bility and produces more evenly distributed delays. Model C, which employs a
curriculum-based reward, shows the most consistent learning behaviour and lowest
peak delays, albeit at the cost of longer training time. Overall, these results con-
firm that carefully structured reward shaping is essential for learning effective and
operationally meaningful conflict-resolution policies.
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4.2 Robustness and Sensitivity Analysis

4.2.1 Evaluation Under a Maximum Delay Cap of 120

This section evaluates the learning behaviour of the DQN-based conflict resolution
agent under a strict operational constraint in which the maximum allowable end-of-
train delay is capped at 120 seconds. The objective of this experiment is to assess
whether the agent can learn stable and effective precedence decisions while operating
under a tight delay budget, and to analyze the resulting trade-offs between delay
minimization, early dispatching, and overall schedule quality.

All results are reported using a 100-episode moving average to smooth stochastic
effects introduced by exploration and to highlight long-term learning trends. For
evaluation, only the primary performance metrics are considered: the LP-based
objective value, the maximum end-of-train delay, the maximum train-end earliness,
and the episode return. Auxiliary diagnostic quantities (e.g., conflict and early
increments) are excluded from the analysis.

LP Objective Convergence.

Figure 4.11 shows the evolution of the LP objective value over training. After an
initial exploration phase with high variance, the objective exhibits a clear upward
trend (corresponding to reduced delay cost), followed by extended plateaus. These
plateaus indicate that the agent converges to stable conflict-resolution policies that
respect the strict delay cap. Short-lived drops in the objective coincide with regime
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Figure 4.11 Maximum-delay cap of 120s — LP objective value (100—episode moving aver-
age). After an initial exploratory phase, the objective converges to stable plateaus, indicating
consistent conflict-resolution behaviour under the strict delay constraint.
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Figure 4.12 Maximum-delay cap of 120s — Maximum end-of-train delay across all trains
(100—episode moving average). The agent learns to respect the imposed delay limit in expec-
tation, with reduced variance and stable behaviour in later training stages.

transitions induced by the delay constraint, after which the agent adapts and recovers
to comparable or higher performance levels.

Maximum End-of-Train Delay.

The 100-episode moving average of the maximum end-of-train delay is shown in
Figure 4.12. Early in training, the agent frequently violates the delay cap, resulting
in elevated maxima. As training progresses, the maximum delay steadily decreases
and stabilizes well below the imposed limit of 120 seconds. This behaviour demon-
strates that the agent learns to internalize the hard operational constraint and avoids
precedence choices that would cause excessive delay propagation.

Maximum Train-End Earliness.

Figure 4.13 reports the maximum train-end earliness across episodes. Under the
strict delay cap, the agent occasionally compensates for delay risk by introducing
additional earliness, particularly during intermediate training phases. However, once
learning stabilizes, the magnitude and variance of earliness remain bounded, indicat-
ing that the agent does not systematically exploit early dispatching at the expense
of operational realism.

Episode Return.

The episode return, shown in Figure 4.14, closely mirrors the LP objective behaviour.
Sharp negative drops correspond to infeasible or highly suboptimal schedules during
exploration, while later stages show a stable return profile with reduced variance.
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100-episode Moving Average — Max Early Values
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Figure 4.13 Maximum-delay cap of 120 s — Maximum train-end earliness (100—episode moving
average). Temporary increases appear as the agent compensates for strict delay constraints;
earliness remains bounded once training stabilizes.

100-episode Moving Average — Episode Return

—70000 -
¢ —80000
=)
3
= —90000 -
©
(@]
)
S —100000 -

—110000 -

~120000 __ . . . .

0 20000 40000 60000 80000
Episode

Figure 4.14 Maximum-delay cap of 120s — Episode return (100-episode moving average).
Short-term drops correspond to constraint-induced regime transitions, followed by recovery and
stable long-term performance.

This confirms that the reward formulation successfully aligns per-step decisions with
the global delay objective, even under stringent delay constraints.
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Discussion.

Overall, the results demonstrate that enforcing a maximum delay of 120 seconds
does not prevent learning, but instead induces structured regime changes that the
agent successfully adapts to. Compared to softer delay caps, the strict setting leads
to faster stabilization of maximum delay values and tighter variance bands in the
steady state. These findings indicate that the proposed RL framework can operate
reliably under realistic operational limits and produce stable, interpretable schedul-
ing policies suitable for real-time decision support.

4.2.2 Reward structure comparison

Table 4.1 provides a structured comparison of the reward components used in the
three environment configurations evaluated in this study. The table highlights how
the reward design is progressively enriched from Model A, Model B and Model C,
reflecting increasing complexity in delay handling, constraint sensitivity, and learning
guidance.

Model A employs a minimal reward formulation focused exclusively on lateness,
resulting in a simple and stationary reward landscape. Model B extends this design
by introducing bidirectional delay handling and monotonicity penalties, enabling the
agent to reason about both lateness and earliness. Model C further augments the
reward structure through curriculum-based tightening of delay and earliness caps,
leading to a non-stationary reward landscape that guides learning from simpler to
more constrained scenarios.

This progressive design allows the impact of individual reward components to be
isolated and evaluated, providing insight into how structured reward shaping affects
learning stability, convergence, and solution quality in timetable conflict resolution.

4.2.3 Hyperparameter Tuning: Setup, Results, and Behaviour
Model description

We tuned the DQN agent that operates on the Alternative Graph (AG) environment
using a lightweight, search—loop based on keras_tuner. Instead of calling the func-
tion to fit the model (model.fit), each trial builds the agent with a sampled set of
hyperparameters and runs a short RL training loop on the same environment; the
tuner records the average return from the last few episodes as the score to maximize.
The environment, reward, action space, and curriculum are identical to those used
in the main experiments; only the agent hyperparameters are varied. The tuning
script defines the search space and the custom run_trial logic, and returns the best
trial along with its configuration.

Tuning procedure

The script samples learning rate, discount factor, e-schedule (decay and floor), batch
size, L2 regularization, and three training cadence values (when to start updates,
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Reward component | Model A Model B Model C
(Lateness-only) (Bidirectional- (Curriculum-based)
delay)

LP-cost improve- | Included Included Included

ment term

Monotonicity Not used Used, fixed weight | Used, same as
penalty (start vs. Model B

end delay)

Lateness increment

Soft cap, fixed

Soft cap, fixed

Soft cap, threshold

penalty (ahead-of-
schedule behaviour)

threshold

penalty (per-block | threshold threshold tightened by
delay increase) curriculum
Earliness increment | Not used Soft cap, fixed Soft cap, threshold

tightened by
curriculum

Bidirectional delay

Lateness only

Lateness and

Lateness and

handling (late + earliness earliness
early)

Dynamic  curricu- | None (static caps) | None (static caps) | Yes (multiple
lum schedule on phases with
caps changing caps)

Negative-cycle ter-
mination penalty

big-M terminal
penalty

big-M terminal
penalty

big-M terminal
penalty

Terminal reward on
successful  comple-
tion

—LP-cost

—LP-cost

—LP-cost

Per-step penalty

Included (small
constant)

Included (same as

Model A)

Included (same as

Model A/B)

Constraint-
violation sensitivity

Low (lateness only)

Medium (late +
early +
monotonicity)

High (same as
Model B, plus
curriculum
tightening)

Reward landscape
over training

Stationary, simple

Stationary, richer

Non-stationary
(curriculum-driven)

Table 4.1 Compact comparison of reward-structure components across the three environment
models.

update frequency, and target—network sync frequency). Each trial trains for a small
number of episodes (20-60) or until & drops below its floor; the score is the mean
return over the last five episodes to favour stable late behaviour. A custom RLTuner
class subclasses the tuner’s random search to execute the RL loop inside run_trial,
report the score, and store the trial’s hyperparameters. This keeps the search faithful
to the online training dynamics while keeping cost modest.

Search space and best configuration

The search covers: learning rate in [107°, 107?] (log sampling), discount € [0.90, 0.99],
e—decay € [0.999,0.99999] with floor € {0.01,0.05}, batch size € {128,256,512},
L2 regularization in [107* 1072] (log), and cadences train_start € {5000, 10000},
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train_freq € {8,16}, update_freq € {64,128}. Across ten trials, the best score (high-
est average return) is selected as in table 4.2:

The log also shows every trial finishing with a feasible schedule (“Feasible!”) and
objective values in a tight band, confirming repeatability under short training hori-
ZOns.

Learning behaviour

With the tuned hyperparameters, training proceeds through distinct phases and
then stabilizes. The episode-return curve (100-episode moving average) drops at
the early curriculum boundaries (caps tighten) and then climbs steadily, eventually
flattening into a high, low—variance plateau. The smoother climb and the higher late
plateau compared to untuned runs indicate that the smaller learning rate, the earlier
start of updates, and the tighter target—network cadence help the value estimates
settle while the policy keeps improving.

LP—cost behaviour

Figure 4.15 shows the LP objective (100—episode MA; higher —cost is better). After
a short unstable phase near the beginning, the curve rises consistently from about
—3.39 x 10* toward —3.16 x 10* and then stays flat with small oscillations. This
is consistent with the reward’s improvement term and suggests the tuned settings
reduce overshooting: gradients are smaller and updates are more frequent, so the
agent improves the objective steadily and keeps it stable later.

Episode—-return behaviour

Figure 4.16 shows a large negative dip early on (curriculum switch plus stronger
penalties per step), followed by a long recovery and then a gradual, smooth increase.
The tuned discount 7=0.90 and the conservative learning rate balance near—term re-
ward and long—term objective, so once the policy adapts to the caps, return becomes
more predictable and less spiky than in the baseline setting.

Features Dimension

learning rate 107°
v 0.90

e-decay 0.999
Emin 0.01
batch 128

AL 1074

train_start 5000

train_freq 8

update_freq 64

Table 4.2 List of hyperparameters




50 4. Evaluation

100-episode Moving Average — Current LP Cost
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Figure 4.15 Hyperparameter—tuned model — LP objective (100—episode MA). Initial volatility
gives way to a sustained rise and a stable late plateau.

Maximum-—delay behaviour

Figure 4.17 plots the maximum end delay across trains. After an early increase
(policy reacting to tighter caps), the moving average trends down steadily and sta-
bilizes around a lower band with visibly reduced variance. This indicates the tuned
agent finds precedence patterns that reduce tail delays and maintain them over long
horizons, a typical sign of better value-target stability from the smaller learning rate
and the update_freq= 64 target sync.

Earliness behaviour

Figure 4.18 shows the maximum earliness (100-episode MA). After initial spikes,
the curve quickly drops and then remains in a narrower range throughout the run.
Together with the maximum-—delay curve, this means the tuned policy suppresses
both premature releases and late shocks. The return and LP—cost trends support this
interpretation: suppressing extremes correlates with a higher, more stable objective.

Interpretation

The tuning loop favoured a conservative optimizer (low learning rate, moderate dis-
count) with early and frequent updates (start updates at 5k steps; train every 8
steps; target sync every 64). In combination, these settings make Q-targets move
smoothly and give the policy enough chances to adjust after each cap phase. The
resulting training dynamics match what we want operationally: (i) a sustained rise
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100-episode Moving Average — Episode Return
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Figure 4.16 Hyperparameter—tuned model — Episode return (100-episode MA). Big early
dips align with curriculum transitions; the curve then recovers and flattens.

and late stability in the LP objective, (ii) fewer and smaller swings in episode re-
turn, and (iii) tighter bands for both maximum delay and earliness. Because the
environment, reward, and curriculum are unchanged from the main experiments,
these benefits can be attributed to the tuned agent hyperparameters rather than to
changes in the decision model. The full tuner log lists all trials, their scores, and the
selected best configuration for reproducibility.

Summary

The robustness experiments indicate that the proposed learning-based approach re-
mains stable under moderate variations in delay caps, reward weights, and hyperpa-
rameters. Imposing a maximum delay cap helps prevent extreme delay accumulation
and improves training stability, particularly in dense conflict scenarios. While hyper-
parameter choices significantly influence convergence quality, the tuned configuration
demonstrates consistent performance across a range of settings. These findings sug-
gest that the approach is not overly sensitive to precise parameter tuning, provided
that reasonable bounds and regularization mechanisms are applied.

4.3 Testing and Evaluation of the Trained Agent

4.3.1 Protocol

We evaluated the final policy on a held-out test script that runs 100 indepen-
dent episodes with identical environment settings (state, actions, reward, curriculum
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100-episode Moving Average — Max Delay
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Figure 4.17 Hyperparameter—tuned model — Maximum end delay (100—episode MA). Clear
downtrend with a compact late band.

caps) and logs feasibility and per—episode metrics. Each run rolls the environment
to termination using the learned policy only; no exploration is used. For auditabil-
ity, a CSV timetable snapshot is dumped after each episode. The raw console log
(episodes 1-100) is provided and used as the basis for the analysis below.

4.3.2 Recorded Metrics

For every episode the test harness reports: Feasibility (absence of negative cycles at
termination), terminal objective J = —cost(G) (final_obj), episode return (sum
of shaped rewards), maximum end delay across trains (maxEndDelay), maximum
absolute final earliness across trains (maxTrainEndEarly), and steps to termina-
tion. All definitions are consistent with the environment in section 4.1.3.

4.3.3 Results (100 episodes)

Next, the results for each individual metric are provided and evaluated.

Feasibility and reproducibility.

All 100 episodes end with Feasible! (no negative cycles at termination). A timetable
CSV is written for every episode, enabling post—hoc inspection and replay.
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100-episode Moving Average — Max Early Values
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Figure 4.18 Hyperparameter—tuned model — Maximum earliness (100—episode MA). Early
spikes disappear; the series stays compact afterwards.

Steps to finish.

The agent consistently terminates in 33 steps on this test set (minimum, maximum,
and median all 33), which matches the expected number of decision points for the
scenario.

Objective.

The terminal objective lies in a tight band of approximately 3.08 x 10%-3.14 x 104
(reported as final_obj), indicating stable policy behaviour under the current caps
and disturbance draws (e.g., 30,792; 31,088; 31,375).

Episode return.

Cumulative return concentrates in a narrow range (around —4.5 x 10%). Because
the per—step reward combines normalized objective improvement with monotonicity
and cap hinges, a stable return band is consistent with a policy that avoids large
penalties and resolves conflicts in a consistent pattern.

Maximum end delay.

The worst end—of-route delay across trains varies widely across scenarios (hundreds
of seconds to just over a thousand seconds). Many episodes fall in the mid range
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(well below 600s), with a smaller tail of harder cases near operational cap bound-
aries. This indicates that the agent generally contains network—wide tail delays while
adapting to different disturbance mixes.

Final earliness across trains.

The maximum absolute final earliness spans a broad range across episodes (from
low hundreds of seconds to just above a thousand seconds), reflecting differences
in where precedence is decided relative to terminal blocks. The monotonicity term
in the reward and the early—cap hinge together limit excessive early finishes while
allowing necessary throughput when the corridor is uncongested.

4.3.4 Qualitative assessment

e Stability. Narrow bands for final_obj and return, together with constant
step counts, point to a stable policy on this test set.

e Delay control. Maximum end delays are usually contained well below 1,000 s,
with a small number of tougher episodes when caps bind.

e Auditability. Per-episode CSV timetables confirm feasibility and make it
straightforward to trace outliers back to specific precedence choices in the

AG.

Summary

When evaluated on unseen disturbance realizations within the same infrastructure
topology, the trained agent consistently produces feasible solutions with low inference
latency. Quantitative results over 100 test episodes show stable total and maximum
delay metrics, while qualitative analysis confirms that the agent resolves conflicts in a
manner consistent with operational intuition. These results indicate that the learned
policy generalizes well across disturbance magnitudes and train order variations on a
fixed corridor, supporting its suitability for real-time decision support in operational
settings.

4.4 Comparative Analysis of OptDis and RL-Based
Conflict Resolution

This section compares the conflict-resolved timetables generated by the company
planning software (LUKS) and the proposed Deep Q-Network (DQN) agent. The
comparison is based on arrival and departure times, induced delays, and total travel
times for Trains A, B, and C.

It presents a comparative evaluation of the proposed RL-based conflict resolution ap-
proach and the OptDis optimization-based solver. The comparison is performed on a
set of controlled test scenarios designed to highlight differences in delay propagation,
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travel time, and robustness under varying operational conditions. For each example,
quantitative results are summarized in tables, followed by a brief interpretation of
the observed behavior.

4.4.1 Example 1: Testing scenario with temporal variations

Before comparing conflict resolution strategies, a baseline timetable is defined for the
testing scenario as shown in Table 4.3. This timetable corresponds to the original
LUKS output without any conflict resolution applied. It reflects the raw schedule
used as input for both the OptDis and DQN-based approaches.

Train | Start Time | End Time
A 07:00:00 07:11:11
B 07:02:00 07:13:14
C 07:00:00 07:07:19

Table 4.3 Baseline timetable for testing

The trains and departure times in the baseline timetable were selected to reproduce
a realistic operational scenario extracted from LUKS data, in which multiple trains
traverse a shared corridor within a short time window. This configuration deliber-
ately induces temporal overlap at critical blocks, ensuring the presence of conflicts
when disturbances are introduced. As such, the scenario provides a representative
and sufficiently challenging test case for evaluating conflict resolution strategies in
the Toy Network shown in 2.3

Table 4.3 summarizes the baseline timetable used for the first comparison scenario.
The schedule corresponds to the original LUKS output without any applied conflict
resolution and serves as a common reference for both OptDis and the RL-based ap-
proach. By using the same baseline timetable, differences observed in the subsequent
results can be attributed solely to the conflict-resolution strategy rather than initial
schedule variations.

LUKS after conflict resolution

Table 4.4 presents the conflict-resolved timetable generated by the LUKS optimization-
based solver. The solution reflects globally optimized precedence decisions that min-
imize delay while ensuring feasibility across all trains in the scenario.

Train | Start Time | End Time
A 06:55:28 07:06:39
B 07:01:59 07:16:20
C 07:00:00 07:07:19

Table 4.4 Conflict resolved timetable generated by LUKS

The resulting timetable exhibits reduced accumulated delay and compact train sep-
aration, demonstrating the ability of the optimization-based approach to efficiently
coordinate conflicting train movements under the given temporal constraints.
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DQN after conflict resolution

Table 4.5 shows the timetable obtained after conflict resolution using the trained
DQN-based approach. The schedule is produced by sequential local precedence
decisions selected by the learned policy.

Train | Start Time | End Time
A 06:59:39 07:10:50
B 07:01:39 07:17:08
C 07:01:30 07:12:00

Table 4.5 Conflict resolved timetable generated by DQN

Compared to the LUKS solution, the DQN-based timetable remains feasible but
exhibits slightly larger delays for some trains. This reflects the limited global fore-
sight of the learning-based policy, while confirming its ability to resolve conflicts in
a consistent and operationally valid manner.

4.4.1.1 Total Travel Time and Delay Comparison

This section compares the impact of conflict resolution on total travel time, departure
delay, and arrival delay for the LUKS solver and the DQN-based agent. Since
both methods share the same base timetable, all delays are reported relative to this
common base timetable.

Methodology.

Table 4.6 summarizes the travel time and delay comparison. For each train, the base
travel time is defined as the difference between the earliest block entry time and the
latest block exit time in the base timetable. After conflict resolution, the same
definition is applied to obtain the updated travel time. Departure delay is computed
as the shift in the earliest block entry time, while arrival delay is computed as the
shift in the latest block exit time relative to the base timetable. Positive values
indicate delay, whereas negative values indicate earliness.

Method Train Base Travel After CR Departure Arrival Delay
Time Travel Time  Delay

LUKS A 11 min 11 s 11 min 11 s —4min 32s —4 min 32 s
LUKS B 11 min 14 s 14 min 21 s —1s +3 min 06 s
LUKS C 7 min 19 s 7 min 19 s 0s 0s

DQN A 11 min 11 s 199min07s 0Os +7 min 56 s
DQN B 11 min 14 s 15 min 43 s 4+2min 00 s +6 min 29 s
DQN C 7 min 19 s 13 min 51 s +3min 00 s 49 min 32 s

Table 4.6 Travel time, departure delay, and arrival delay after conflict resolution (relative to
common base timetable)
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Discussion.

The LUKS solution resolves conflicts by concentrating delay on a limited subset of
trains. Trains A and C preserve their original travel times, with Train A even experi-
encing earliness, while Train B absorbs the majority of the delay through an extended
travel time and later arrival. This behavior is characteristic of optimization-based
approaches that prioritize minimizing the number of affected trains.

In contrast, the DQN-based solution distributes delay across all trains. All services
experience increased travel times and positive arrival delays, arising from delayed
departures and additional waiting during execution. Rather than concentrating
delay on a single train, the agent restores feasibility by spreading delay more evenly
across the timetable, resulting in a higher cumulative delay.

Key Observations

Overall, the comparison highlights a fundamental behavioral difference between the
two approaches. LUKS achieves conflict resolution with minimal disruption to most
trains by concentrating delay, whereas the DQN agent accepts larger overall travel
time increases in exchange for distributing delay across multiple services. This dis-
tinction is important when evaluating trade-offs between fairness and total delay in
learning-based timetable conflict resolution.

4.4.2 Example 2: Testing scenario with different block order and
train directions

This example evaluates the impact of conflict resolution on three trains using the
baseline timetable, the LUKS conflict-resolved timetable, and the DQN-based conflict-
resolved timetable. Travel times, departure delays, and arrival delays are reported
relative to the baseline timetable.

The baseline timetables used for the evaluation differ from those used during train-
ing of the DQN agent. These differences extend beyond timing perturbations and
include variations in train directions and block traversal sequences. As a result, the
evaluated scenarios exhibit conflict structures that are not present in the training
data. This design choice allows the evaluation to assess the agent’s ability to gener-
alize to structurally different timetables, rather than merely adapting to time-shifted
instances of previously seen schedules.

Baseline Timetable

Table 4.7 summarizes the baseline timetable for Example 2 prior to any conflict
resolution. The schedule corresponds to the initial LUKS output and reflects the
planned start and end times for each train without considering interaction effects
between conflicting movements. This baseline serves as a reference for evaluating
the impact of conflict resolution on travel time and delay propagation.
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Train Start Time End Time Travel Time

A 12:01:09 12:07:10 6 min 01 s
B 11:58:07 12:08:05 9 min 58 s
C 11:58:07 12:08:22 10 min 15 s

Table 4.7 Baseline timetable for Example 2

LUKS After Conflict Resolution

Table 4.8 presents the conflict-resolved timetable obtained using the LUKS optimization-
based solver for Example 2. The solver adjusts train start and end times to resolve
conflicts while minimizing overall delay and preserving feasible block occupancy.

Train Start Time End Time Travel Time

A 11:58:59 12:05:01 6 min 02 s
B 12:00:44 12:11:58 11 min 14 s
C 11:58:07 12:08:47 10 min 40 s

Table 4.8 LUKS timetable after conflict resolution (Example 2)

Compared to the baseline timetable, the LUKS solution results in moderate ad-
justments to train schedules, leading to a controlled increase in travel times. The
optimized solution balances precedence decisions across trains and limits delay prop-
agation under the altered conflict structure of this scenario.

DQN After Conflict Resolution

For the DQN agent, only the final start and end times are considered. These are
obtained as the earliest and latest event times per train in the conflict-resolved
episode.

Table 4.9 shows the timetable produced by the DQN-based approach for Example 2.
Only the final start and end times of each train are reported, corresponding to the
earliest and latest events observed in the conflict-resolved episode.

Train Start Time End Time Travel Time

A 12:01:09 12:35:52 34 min 43 s
B 11:58:07 12:43:56 45 min 49 s
C 11:58:07 12:27:05 28 min 58 s

Table 4.9 DQN timetable after conflict resolution (Example 2)

The DQN-based solution remains feasible but exhibits significantly higher travel
times compared to the optimization-based approach. The increased delays reflect the
sensitivity of the learned policy to changes in conflict ordering and route structure,
highlighting the limited global coordination capability of the agent in this scenario.
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4.4.2.1 Travel Time and Delay Comparison

Methodology.

As shown in Table 4.10 travel time is defined as the difference between the train’s
end time and start time. Departure delay is computed as the shift in start time
relative to the baseline timetable, while arrival delay is computed as the shift in end
time relative to the baseline timetable. Positive values indicate delay and negative
values indicate earliness.

Method Train Base Travel After CR  Departure Arrival Delay

Time Travel Time  Delay
LUKS A 6 min 01 s 6 min 02 s —2min 10 s -2 min 09 s
LUKS B 9 min 58 s 11 min 14 s +2min 37s 43 min 53 s
LUKS C 10 min 15 s 10 min 40 s 0s +25's
DQN A 6 min 01 s 34 min43s  0s +28 min 42 s
DQN B 9 min 58 s 45 min 49 s 0s +35 min 51 s
DQN C 10 min 15 s 28 min 58 s 0s +18 min 43 s

Table 4.10 Travel time, departure delay, and arrival delay comparison for Example 2 (relative
to baseline)

Discussion

The LUKS solution resolves conflicts with limited impact on total travel times by
selectively reallocating temporal slack. In this solution, Train A is shifted earlier,
resulting in earliness, while Trains B and C experience moderate arrival delays. Delay
is primarily concentrated on Train B, which is consistent with an optimization-based
strategy that seeks to minimize overall timetable disruption by localizing delay rather
than distributing it across all services.

In contrast, the DQN-based solution introduces substantial increases in travel time
and arrival delay for all trains. Although scheduled departure times are largely
preserved at early stages of the timetable, prolonged waiting induced by sequen-
tial conflict resolution decisions leads to significant extensions of end-to-end journey
durations. This behavior indicates that the learned policy restores feasibility by ac-
cumulating and propagating delay across multiple trains, rather than concentrating
delay on a limited subset of services.

Key Observations

Example 2 further highlights the behavioral differences between optimization-based
and learning-based approaches under structural timetable modifications. While
LUKS achieves conflict resolution with relatively small and localized delays, the
DQN agent distributes delay more uniformly across all trains, resulting in signifi-
cantly increased travel times. This outcome reflects the agent’s limited ability to
generalize to changes in block order and train direction that alter the underlying
conflict topology. The results underscore the importance of reward design, delay
penalties, and exposure to structurally diverse training scenarios when applying re-
inforcement learning methods to timetable conflict resolution.
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4.4.3 Example 3: Increased Number of Trains on the Same

Topology

This example evaluates conflict resolution performance when the number of trains
is increased while keeping the underlying infrastructure topology unchanged. Five
trains (A-E) are considered. The baseline timetable, the LUKS conflict-resolved
timetable, and the DQN-based conflict-resolved timetable are compared in terms of
total travel time, departure delay, and arrival delay.

4.4.3.1 Baseline Timetable

The baseline timetable in Table 4.11 defines the initial schedule for the scenario with
an increased number of trains on the same infrastructure topology. This timetable
introduces higher traffic density and a larger number of conflicts, creating a more
challenging rescheduling problem for both approaches.

Train Start Time End Time Travel Time
A 07:00:03 07:15:17 15 min 14 s
B 07:03:01 07:17:12 14 min 11 s
C 07:01:39 07:08:58 7 min 19 s
D 07:00:03 07:14:35 14 min 32 s
E 07:01:39 07:08:24 6 min 45 s

Table 4.11 Baseline timetable for Example 3

4.4.3.2 LUKS After Conflict Resolution

Table 4.12 presents the timetable produced by the LUKS optimization-based solver
after conflict resolution. It represents the reference solution obtained through global
optimization under the given scenario and is used to benchmark solution quality in
terms of delay and travel time.

Train Start Time End Time Travel Time

A 07:00:03 07:15:17 15 min 14 s
B 07:03:01 07:20:04 17 min 03 s
C 07:01:39 07:11:07 9 min 28 s
D 06:51:27 07:06:42 15 min 15 s
E 06:53:57 07:01:16 7 min 19 s

Table 4.12 LUKS timetable after conflict resolution (Example 3)

The LUKS-based solution successfully resolves all conflicts while maintaining con-
trolled travel times across trains. Compared to the baseline timetable, the optimization-
based approach redistributes delays to achieve a globally consistent schedule, demon-
strating its effectiveness in handling increased traffic density through coordinated
precedence decisions and global optimization.
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4.4.3.3 DQN After Conflict Resolution

For the DQN agent, only the final start and end times are considered. These are
extracted as the earliest and latest event times per train in the conflict-resolved
episode.

The table 4.13 shows the timetable generated by the DQN-based approach after
resolving all detected conflicts. The resulting schedule reflects the cumulative effect
of local precedence decisions selected by the learned policy.

Train Start Time End Time Travel Time
A 07:00:03 07:58:39 58 min 36 s
B 07:03:01 07:58:27 55 min 26 s
C 07:01:39 07:23:02 21 min 23 s
D 07:00:03 07:58:08 58 min 05 s
E 07:01:39 07:28:44 27 min 05 s

Table 4.13 DQN timetable after conflict resolution (Example 3)

The DQN-based solution remains feasible but exhibits significantly higher travel
times compared to the optimization-based approach. This behavior reflects the
cumulative effect of local precedence decisions and highlights the limited global co-
ordination of the learned policy in high-density traffic scenarios.

4.4.3.4 Travel Time and Delay Comparison

Methodology.

As shown in Table 4.14 travel time is computed as the difference between the train
end time and start time. Departure delay corresponds to the shift in start time
relative to the baseline timetable, while arrival delay corresponds to the shift in end
time relative to the baseline. Positive values indicate delay, and negative values
indicate earliness.

Method Train Base Travel After CR  Departure Arrival Delay
Time Travel Time  Delay

LUKS A 15 min 14 s 15 min 14 s 0s 0s

LUKS B 14 min 11 s 17 min 03 s 0s +2 min 52 s
LUKS C 7 min 19 s 9 min 28 s 0s +2 min 09 s
LUKS D 14 min 32 s 15 min 15 s —8 min 36 s —7 min 53 s
LUKS E 6 min 45 s 7 min 19 s —7min 42 s —7 min 08 s
DQN A 15 min 14 s 58 min 36 s 0s +43 min 22 s
DQN B 14 min 11 s 55 min 26 s 0s +41 min 15 s
DQN C 7 min 19 s 21 min 23 s 0s +14 min 04 s
DQN D 14 min 32 s 58 min 05 s 0s +43 min 33 s
DQN E 6 min 45 s 27 min 05 s 0s +20 min 20 s

Table 4.14 Travel time, departure delay, and arrival delay comparison for Example 3 (relative

to baseline)




62 4. Evaluation

Discussion.

With an increased number of trains on the same topology, the LUKS solution resolves
conflicts by selectively redistributing delay. Train A remains unaffected, Trains B
and C absorb moderate arrival delays, while Trains D and E are shifted earlier,
resulting in earliness. Overall, the increase in travel time remains limited.

In contrast, the DQN-based solution exhibits a pronounced degradation in perfor-
mance as traffic density increases. All trains experience substantial arrival delays
and significantly extended travel times, despite unchanged departure times. This
indicates that, under higher conflict density, the learned policy restores feasibility
primarily by allowing extensive waiting and delay accumulation rather than concen-
trating delay on a subset of trains.

Key Observations.

Example 3 demonstrates that increasing the number of trains on the same infrastruc-
ture amplifies the behavioral differences between optimization-based and learning-
based conflict resolution. While LUKS scales by managing delay distribution ef-
fectively, the DQN agent exhibits poor scalability in this scenario, leading to large
cumulative delays across all trains.

4.4.4 Example 4: Evaluation on a Previously Unseen Infrastruc-
ture Topology

To assess the generalization capability of the trained DQN agent, the learned policy
was evaluated on a previously unseen infrastructure topology containing additional
stations and blocks beyond those observed during training. While the training sce-
narios were restricted to a fixed set of infrastructure blocks, the new topology intro-
duces extended block sequences and structurally different routes, resulting in novel
conflict configurations.

Generalization Limitation.

The trained DQN agent is currently not able to adapt to infrastructure topologies
that differ from those encountered during training. The learned policy relies on a
state representation and action space that are explicitly tied to the set of blocks
present in the training topology. Introducing new blocks fundamentally alters the
structure of the Alternative Graph, leading to conflict patterns and precedence de-
cisions that lie outside the agent’s training distribution.

Underlying Challenge.

This limitation arises from the topology-dependent nature of the state encoding and
the neural network input dimensionality. The agent learns value estimates for con-
flicts defined over a fixed infrastructure graph; consequently, new blocks and routes
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cannot be interpreted meaningfully by the trained policy. Even if the state repre-
sentation were extended dynamically, the agent would lack learned experience for
conflicts involving unseen infrastructure elements, resulting in unreliable or unin-
formed decisions.

Implications for Generalization.

The results demonstrate that the proposed RL-based approach generalizes well
across different disturbance magnitudes, traffic densities, and timing variations on
a fixed infrastructure topology. However, it does not generalize to entirely new net-
work topologies without additional adaptation. This behavior is consistent with the
training regime, which does not expose the agent to topological variability.

Requirement for Retraining or Adaptation.

For deployment on substantially different infrastructures, retraining or adaptation is
required. One practical approach is to retrain the agent using data generated from
the new topology, allowing it to learn infrastructure-specific conflict and delay prop-
agation patterns. Alternatively, transfer learning may be employed by initializing
the model with pre-trained weights and fine-tuning it on the new network. More fun-
damentally, future work should investigate topology-invariant or graph-based state
representations to improve structural generalization.

Key Observations.

Example 4 highlights that the current DQN-based conflict resolution framework is
topology-specific. While effective on variations of a known infrastructure, extending
the approach to unseen railway networks requires retraining or more expressive state
representations that can capture structural differences across topologies.

OptDis Performance on the Unseen Topology.

In contrast to the learning-based approach, the OptDis optimization solver is able
to handle the previously unseen infrastructure topology without modification. The
solver does not rely on a fixed-dimensional state representation and can therefore
resolve conflicts on arbitrary network topologies.

The resulting OptDis solution remains feasible and consistent with the global opti-
mization objective, demonstrating robust behavior under structural changes in the
infrastructure. This highlights a key distinction between the two approaches: while
the RL-based policy is topology-specific and limited by its training distribution, the
optimization-based method generalizes inherently to new infrastructure layouts at
the cost of higher computational effort.
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Discussion of Results

This chapter synthesizes the experimental results presented in the previous chapter
and interprets their implications for practical railway timetable rescheduling. Rather
than introducing new experiments, the focus lies on understanding why the observed
behaviors occur, how different design choices affect performance, and under which
conditions reinforcement learning provides operational value. The discussion pro-
ceeds from a comparative analysis of learning configurations and optimization-based
baselines to broader considerations of solution quality, computational performance,
scalability, and deployment implications.

5.1 Comparative Discussion about the performance
of the models

The three environment formulations evaluated in this work exhibit distinct learning
characteristics and induce different types of dispatching behaviour from the agent.
Although they share the same underlying network, timetable and DQN architec-
ture, their reward structures and penalty mechanisms produce measurably different
convergence patterns, robustness levels, and final performances.

Model A vs. Model B.

The introduction of earliness penalties and monotonicity shaping in Model B pro-
vides a noticeably more stable learning process compared to the baseline lateness-
only formulation of Model A. Model A’s convergence is hindered by its willingness to
exploit aggressive local shortcuts: because the environment does not penalize early
running or large oscillatory corrections, the agent often discovers short-term bene-
ficial but structurally unrealistic decisions. Model B rectifies this by discouraging
both excessive positive and negative delay increments. The corresponding episode-
return and LP-cost curves exhibit smoother and more predictable behaviour, and
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the agent achieves lower final maximum delays. These results confirm that even
moderate increases in realism within the reward function significantly improve the
quality and stability of the learned dispatching policy.

Model B vs. Model C.

The curriculum-based formulation introduced in Model C extends the refinement
achieved by Model B. By gradually tightening the lateness and earliness caps at
specific checkpoints, Model C deliberately introduces temporary phases of increased
difficulty. This results in the characteristic dip—then—recover pattern visible in all
three learning curves. During these stricter phases, previously acceptable actions
become heavily penalized, forcing the agent to restructure its policy. Although
performance deteriorates briefly, the agent subsequently achieves substantially higher
episode returns, lower LP-cost values, and significantly reduced maximum delays
compared to the other models.

The behaviour of Model C reflects a well-known principle in curriculum-based re-
inforcement learning: temporary exposure to harsher constraint regimes guides the
agent away from fragile or over-fitted behaviours, toward more resilient and general
solutions. In practice, this manifests as a policy that not only minimizes overall delay
but does so while respecting a broader set of implicit operational requirements.

Model A vs. Model C.

The contrast between Model A and Model C is especially pronounced. Model A
achieves reasonable performance only after a prolonged initial oscillatory phase and
ultimately converges to a feasible, but not particularly robust and conflict-resolute
strategy. In contrast, Model C learns efficiently from the outset, adapts to progres-
sively stricter operational regimes, and reaches the lowest delay and LP-cost values
across all experiments. The curriculum structure therefore proves instrumental in
transforming a general delay-minimization agent into a sophisticated and constraint-
aware dispatcher.

Overall comparison.

When comparing all three models holistically, the following pattern emerges:
e Model A learns slowly and displays high variance due to its simple reward
structure.
e Model B adds realism and provides smoother convergence and lower delays.
e Model C surpasses both, combining efficient exploration with disciplined late-

training behaviour, resulting in the best global performance.

This progression illustrates how incremental modifications to the reward structure
and environment logic can dramatically improve the quality of the learned policy in
Alternative-Graph-based reinforcement learning systems.
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Summary

This evaluation demonstrates clear performance differences arising from the design of
the environment and reward structure. Model A, based solely on lateness penalties,
provides a useful baseline but suffers from unstable early learning and limited real-
ism. Model B improves significantly upon this by incorporating monotonicity and
earliness penalties, yielding smoother learning dynamics and improved final perfor-
mance. Model C, which introduces curriculum-based cap adjustments, exhibits the
most complex learning trajectory but ultimately achieves the highest-quality policy,
the lowest LP-cost values, and the smallest maximum delays.

The results highlight the importance of carefully designed reward shaping and pro-
gressive constraint exposure in environments involving temporal feasibility and con-
flict propagation. In particular, the curriculum mechanism employed in Model C
enables the agent to move beyond merely feasible or acceptable policies toward gen-
uinely robust and operationally relevant conflict-resolution strategies. These find-
ings support the adoption of curriculum-based reinforcement learning approaches for
large-scale railway traffic management tasks.

5.2 Comparison of Good and Worst Hyperparameter
Configurations

This section presents a detailed comparison between the tuned (“Good”) hyperpa-
rameter configuration and the four intentionally degraded (“Worst A-D”) configu-
rations as shown in Table 5.1. These worst—case configurations were constructed to
demonstrate the sensitivity of the reinforcement learning (RL) agent to hyperparam-
eter choices. Each worst set degrades the agent’s stability, exploration behaviour,
or learning dynamics in a different manner, thereby illustrating the importance of
hyperparameter tuning for the train rescheduling problem.

Parameter Good Worst A Worst B Worst C  Worst D
Learning rate 1x10™° 1x10% 5x107% 1x107° 1x1072
Discount factor ~ 0.9 0.99 0.9 0.5 0.1

e start 1.0 1.0 1.0 1.0 1.0

¢ decay 0.999 0.995 0.95 0.99999 1.0
€min 0.01 0.10 0.001 0.20 1.0
Batch size 256 64 128 1024 32
Train start 10000 2000 2000 20000 0
Train frequency 16 4 8 32 1
Target update freq. 64 500 64 32 1

L2 regularisation 1x10* 0 1x107% 1x 1072 0

Replay memory size 10000000 200000 1000000 5000000 100000
Table 5.1 Good (Tuned) Versus Worst Hyperparameter Sets
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5.2.1 Qualitative Comparison of Learning Behaviour

The tuned hyperparameter set (“Good”) exhibits stable learning behaviour, with
cumulative rewards improving steadily over episodes and the scheduling objective
converging toward lower values. In contrast, each of the four worst hyperparameter
sets introduces a distinct degradation mode, illustrating typical RL failure patterns
such as divergence, premature exploitation, underfitting, or random-walk behaviour.

5.2.1.1 Worst Set A: Instability Due to Aggressive Learning

Worst Set A uses a learning rate that is two orders of magnitude larger than the
tuned value. Combined with reduced replay memory and infrequent target net-
work updates, the Q-network exhibits unstable behaviour. The cumulative reward
fluctuates with no upward trend and the scheduling objective remains significantly
worse than the Good configuration. The agent fails to converge and frequently oscil-
lates between suboptimal actions, demonstrating the detrimental effect of excessive
learning rates in DQN-based RL systems.

5.2.1.2 Worst Set B: Premature Exploitation and Divergence

Worst Set B decays the exploration factor € too quickly and forces the agent into near-
deterministic decisions early in training. As a result, the agent gets trapped in poor
local optima. The performance logs show extreme oscillations in cumulative reward
and catastrophic drops in objective value (reaching below —59000), which never
occur under the Good configuration. This configuration highlights the necessity of
slow exploration decay in large combinatorial scheduling problems.

5.2.1.3 Worst Set C: Underfitting and Slow Learning

Worst Set C employs an excessively small learning rate and a very large batch size,
both of which suppress learning progress. In addition, the high L2 regularisation
strength restricts the modelling capacity of the network. The resulting learning
curve is almost flat, showing little to no improvement, and the objective values fre-
quently degrade. This configuration represents underfitting due to overly constrained
optimisation dynamics.

5.2.1.4 Worst Set D: Random-Walk Behaviour

Worst Set D effectively removes learning by assigning a very high learning rate,
no exploration decay, and minimal replay memory. The agent behaves almost like
a random decision-maker throughout training. The performance logs show near-
complete lack of convergence: rewards remain noisy and the objective values are
consistently high. This configuration serves as a baseline illustrating the behaviour
of an untrained agent.
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5.2.1.5 Comparison with the Tuned Configuration

Across all experiments, the Good hyperparameter configuration consistently pro-
duces lower scheduling objective values, smoother reward curves, and markedly bet-
ter feasibility. The contrast with the four worst sets demonstrates that the proposed
hyperparameter tuning procedure is essential for achieving stable and high-quality
learning in the train rescheduling environment.
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Figure 5.1 Two-panel comparison of training reward (negative objective) for the tuned (Good)
and worst hyperparameter configurations. The top panel shows long training runs (Good and
Worst B) using a 100-episode moving average of the reward. The bottom panel shows short
training runs (Worst A, Worst C and Worst D) using raw reward values, as these configurations
terminate early.

To ensure a fair and readable visualization across hyperparameter configurations
with strongly varying training lengths, a two-panel representation is adopted in
Fig. 5.1. Long training runs are displayed using a 100-episode moving average to
suppress stochastic noise, while short training runs are shown using raw reward
values to preserve early-stage learning dynamics. This avoids visual compression of
short runs near the origin when plotted against long training horizons.

5.2.2 Discussion

Overall, the evaluation demonstrates that the trained agent is able to successfully
navigate the AG-based scheduling environment and produce feasible, conflict-free
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timetables that improve upon the disturbed initial state. The agent’s decision-
making is deterministic, fast, and aligned with operationally meaningful resolution
patterns. These results validate the integration of AG-based timing propagation
with a reinforcement learning controller and form a basis for further comparison
against optimization-based methods such as OptDis.

5.3 Comparison with Optimization-Based Approaches

To compare the optimization based approaches, Table 5.2 summarizes the key ob-
servations from the four comparative evaluation scenarios presented in Section 4.10.

Scenario RL-Based @ DQN | OptDis Behav- | Key Interpretation
Behavior ior
Example 1: | Resolved conflicts | Achieved lower | RL is effective for rapid
Temporal quickly and pro- | total delay but | response under time
variations duced feasible | required longer | pressure, while OptDis
schedules with low | computation yields higher-quality
inference latency; | time solutions when time
delay  distributed allows
across trains
Example Maintained feasi- | Handled re- | RL  performance de-
2: Different | bility but showed | ordering ro- | pends on learned conflict
block order | sensitivity to | bustly due to | patterns; OptDis is less
and train | altered conflict | global optimiza- | sensitive to structural
directions structure and or- | tion variations
dering
Example 3: | Scaled to larger | Optimized delay | RL favors locally fea-
Increased traffic volumes but | concentration sible decisions, whereas
number  of | accumulated higher | more effectively | OptDis better manages
trains on | total delay due to | at higher densi- | global delay trade-offs in
the same | delay spreading ties dense traffic
topology
Example 4: | Failed to generalize | Solved the sce- | RL policy is topology-
Previously and could not con- | nario without re- | specific; retraining or
unseen  in- | struct valid states | training topology-invariant rep-
frastructure | or policies resentations are required
topology for generalization

Table 5.2 Summary of comparative evaluation scenarios between the RL-based approach and
OptDis (Section 4.10).

Across all four scenarios, the results highlight a consistent trade-off between solution
quality and decision latency. While OptDis provides robust and high-quality solu-
tions across a wide range of conditions, the RL-based approach excels in scenarios
with fixed infrastructure and tight time constraints, where rapid, feasible decisions
are required.
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Taken together, the scenarios summarized in Table 5.2 highlight recurring trade-offs
between solution quality, robustness, and decision latency. While the optimization-
based OptDis solver consistently achieves strong delay minimization across a wide
range of conditions, the reinforcement learning agent exhibits complementary strengths
in responsiveness and feasibility under time constraints. The following sections dis-
cuss these trade-offs in more detail by examining solution quality, computational
performance, scalability, and implications for operational use.

5.4 Solution Quality

Across all evaluated scenarios on a fixed infrastructure topology, the DQN agent
consistently produced feasible timetables and was able to resolve conflicts with-
out violating operational constraints. In scenarios involving limited disturbances or
small numbers of trains, the resulting total travel times and arrival delays were often
comparable to those obtained by the LUKS solver. This confirms that the agent suc-
cessfully learned precedence-selection strategies that align with delay-minimization
objectives.

However, as traffic density increased, clear qualitative differences emerged. In Ex-
ample 3, which increased the number of trains on the same topology, the LUKS
solver concentrated delay on a subset of trains, preserving near-baseline travel times
for others. In contrast, the DQN agent distributed delay across all trains, leading to
substantially increased travel times and arrival delays. While feasibility was main-
tained, the cumulative delay grew significantly, indicating that the learned policy
favors globally safe but conservative decisions under high conflict density.

5.5 Computational Performance

Once trained, the DQN agent demonstrated extremely low inference latency, pro-
ducing precedence decisions in milliseconds per step. This confirms the suitability
of the approach for real-time or near real-time operational settings where rapid re-
sponse is critical. In contrast, the LUKS solver relies on mixed-integer optimization,
which can require significantly more computation time as problem size and conflict
density increase.

That said, computational efficiency alone does not guarantee solution quality. The
experiments show that although the DQN agent reacts quickly, its decisions under
complex conditions may lead to excessive waiting and delay accumulation. This
highlights a fundamental trade-off between speed and optimality when comparing
learning-based methods with exact optimization.

5.6 Scalability and Generalization

The evaluation demonstrates that the DQN agent scales effectively with increasing
traffic density and conflict complexity on a fixed infrastructure topology. Across sce-
narios with varying numbers of trains, disturbance magnitudes, and train orderings,
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the agent maintained feasible operation and stable decision latency, indicating that
the learned policy remains applicable as problem size grows within a given corridor.
In addition, the agent generalizes well across different disturbance realizations and
traffic patterns as long as the underlying infrastructure topology remains unchanged.
This supports the hypothesis that an AG-based state representation combined with
action masking enables robust learning on a fixed network.

However, experiments on previously unseen infrastructure topologies provide clear
evidence of limited topology-level generalization. When additional blocks and mod-
ified station layouts were introduced that were not present during training, the
evaluation failed during state construction due to missing block identifiers. This
behavior is not incidental; it reflects the fact that the state representation, action
space, and neural network architecture are explicitly tied to the training topology.
Consequently, the trained model cannot be directly applied to infrastructures with
different block sequences or extended layouts without retraining or architectural
adaptation.

These findings indicate that while reinforcement learning scales well within a fixed
operational context, achieving topology-invariant generalization requires alternative
state representations or transfer learning mechanisms.

5.7 Comparison with LUKS and Hybrid Potential

The LUKS solver consistently produced high-quality solutions across all tested sce-
narios, including cases with increased traffic density and structurally different timeta-
bles. Its ability to concentrate delay and globally optimize precedence decisions re-
mains a key strength. In contrast, the DQN agent excels in speed and adaptability
within a known topology but exhibits degraded performance as conflicts intensify.

These complementary strengths suggest a hybrid operational role. The DQN agent
could be used to generate rapid initial precedence decisions or screen infeasible op-
tions, which are then refined by an optimization-based solver such as LUKS. Such
a hybrid approach could combine the responsiveness of reinforcement learning with
the solution quality guarantees of exact optimization.

5.8 Implications for Operational Use

From an operational perspective, the results indicate that a trained DQN agent is
best suited as a corridor-specific decision-support tool. Deployment on new infras-
tructures would require retraining or fine-tuning using data from the target topology.
Within these bounds, the approach offers valuable real-time support, particularly in
situations where fast reactions are more critical than global optimality.



Conclusion

This thesis investigates the applicability of reinforcement learning for microscopic
train timetable conflict resolution under disturbances, using the Alternative Graph
(AG) as an explicit and interpretable modeling foundation. The primary objective
was to assess whether a learning-based approach can support fast, feasible conflict-
resolution decisions on realistic railway infrastructure data, and how its performance
compares to a state-of-practice optimization-based solver under operationally rele-
vant conditions.

A complete data-to-decision pipeline was developed that transforms industrial ex-
ports from the LUKS system into Alternative Graph instances and a Markov Deci-
sion Process suitable for reinforcement learning. Within this environment, a Deep
Q-Network (DQN) agent was trained to resolve conflicts by selecting local precedence
decisions on shared infrastructure blocks, with feasibility preserved through explicit
graph-based propagation and cycle checks. The approach was evaluated on real-
istic disturbance scenarios and benchmarked against OptDis, an industry-standard
MILP-based rescheduling solver, under matched scenarios and time constraints.

The experimental evaluation demonstrates that the proposed learning-based frame-
work can consistently produce feasible rescheduling decisions with negligible infer-
ence latency on fixed infrastructure topologies. Across a wide range of disturbance
magnitudes and train orderings on the same corridor, the trained agent exhibits sta-
ble behavior and effective delay control, confirming that reinforcement learning can
capture meaningful conflict-resolution strategies when grounded in a microscopic
and feasibility-aware model. The analysis of learning behavior further highlights the
importance of reward design: curriculum-based shaping leads to more stable con-
vergence and lower peak delays than simpler lateness-only formulations, at the cost
of increased training time.

Robustness and sensitivity experiments indicate that the learned policy remains sta-
ble under moderate variations in reward weights, delay caps, and hyperparameters.
While extreme parameter choices can degrade learning quality, the tuned configura-
tion generalizes reliably across realistic settings, suggesting that the approach is not
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overly sensitive to precise tuning. However, performance degrades as traffic density
increases substantially, reflecting the growing complexity of delay propagation and
the limits of a fixed-capacity policy representation.

In comparison with OptDis, the learning-based approach exhibits complementary
strengths. The optimization-based solver consistently achieves lower total delay in
highly congested or complex scenarios but requires significantly higher computation
time. In contrast, the DQN agent produces conflict-resolution decisions almost in-
stantaneously and performs competitively in moderate-scale scenarios, though with
higher cumulative delay under heavy traffic or on previously unseen infrastructure
layouts. These findings confirm that reinforcement learning is well suited for time-
critical decision support, while optimization remains preferable when solution opti-
mality is paramount.

With respect to the stated hypotheses, the results provide the following conclusions.
Hypothesis H1 is supported: the reinforcement-learning-based agent learns effective
conflict-resolution strategies that reduce delay compared to baseline or naive ap-
proaches in disturbed scenarios. Hypothesis H2 is partially supported: the learned
policy generalizes well across disturbance magnitudes and traffic patterns on a fixed
corridor but exhibits limited transfer to previously unseen infrastructure topologies.
Hypothesis H3 is supported in terms of computational performance, as the learning-
based approach achieves predictable and minimal inference times, while the solution
quality remains slightly inferior to optimization under extreme congestion.

Overall, the findings demonstrate that reinforcement learning can complement, rather
than replace, optimization-based timetable rescheduling methods. When applied
within a fixed operational context, a trained policy can provide fast, feasible, and
interpretable decisions that support dispatchers under time pressure and can po-
tentially guide or accelerate exact optimization. This suggests a promising role for
hybrid workflows in which learning-based policies provide rapid initial decisions or
pruning, followed by optimization-based refinement.

Future work should focus on improving generalization across infrastructure topolo-
gies, e.g., through richer graph-based state encodings, transfer learning, or curricu-
lum strategies that explicitly vary network structure during training. Further in-
vestigation of hybrid learning—optimization approaches and integration into rolling-
horizon or real-time dispatching systems would also be valuable. Extending the
framework to incorporate uncertainty in running and dwell times, as well as interac-
tions with rolling stock and crew scheduling, represents another important direction
toward fully operational deployment.

Reproducibility.

All scripts developed and used for data processing, model training, evaluation, and
plot generation in this thesis are publicly available in a GitHub repository: https:
//github.com/prettore/Train_Timetabling_DQL.

The repository contains the complete experimental pipeline and enables reproduction
of the results presented in this work.
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